DFT study of the glutathione peroxidase-like activity of phenylselenol incorporating solvent-assisted proton exchange

被引:41
作者
Bayse, Craig A. [1 ]
机构
[1] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA
关键词
D O I
10.1021/jp072297u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modeling of the glutathione peroxidase-like activity of phenylselenol has been accomplished using density-functional theory and solvent-assisted proton exchange (SAPE). SAPE is a modeling technique intended to mimic solvent participation in proton transfer associated with chemical reaction. Within this method, explicit water molecules incorporated into the gas-phase model allow relay of a proton through the water molecules from the site of protonation in the reactant to that in the product. The activation barriers obtained by SAPE for the three steps of the GPx-like mechanism of PhSeH fall within the limits expected for a catalytic system at physiological temperatures (Delta G(1)(double dagger), = 19.1 kcal/mol; Delta G(2)(double dagger) = 6.6 kcal/mol; G(3)(double dagger) = 21.7 kcal/mol) and are significantly lower than studies which require direct proton transfer. The size of the SAPE network is also considered for the model of the reduction of the selenenic acid, step 2 of the GPx-like cycle. Use of a four-water network better accommodates the reaction pathway and reduces the activation barrier by 5 kcal/mol over the two-water model.
引用
收藏
页码:9070 / 9075
页数:6
相关论文
共 48 条
[21]   Effect of micro and bulk solvation on the mechanism of nucleophilic substitution at sulfur in disulfides [J].
Hayes, JM ;
Bachrach, SM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (39) :7952-7961
[22]   ABINITIO RELATIVISTIC EFFECTIVE POTENTIALS WITH SPIN-ORBIT OPERATORS .2. K THROUGH KR [J].
HURLEY, MM ;
PACIOS, LF ;
CHRISTIANSEN, PA ;
ROSS, RB ;
ERMLER, WC .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (12) :6840-6853
[23]   Models of water-assisted hydrolyses of methyl formate, formamide, and urea from combined DFT-SCRF calculations [J].
Kallies, B ;
Mitzner, R .
JOURNAL OF MOLECULAR MODELING, 1998, 4 (06) :183-196
[24]  
Kayanoki Y, 1996, J BIOCHEM-TOKYO, V119, P817
[25]   The role of oxidative stress in carcinogenesis [J].
Klaunig, JE ;
Kamendulis, LM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2004, 44 :239-267
[26]   Selenium in biology:: Facts and medical perspectives [J].
Köhrle, J ;
Brigelius-Flohé, R ;
Böck, A ;
Gärtner, R ;
Meyer, O ;
Flohé, L .
BIOLOGICAL CHEMISTRY, 2000, 381 (9-10) :849-864
[27]   Ebselen, a seleno-organic antioxidant, is neuroprotective after embolic strokes in rabbits - Synergism with low-dose tissue plasminogen activator [J].
Lapchak, PA ;
Zivin, JA .
STROKE, 2003, 34 (08) :2013-2018
[28]  
Levander O., 2006, SELENIUM ITS MOL BIO
[29]   Structure and mechanism of carbonic anhydrase [J].
Lindskog, S .
PHARMACOLOGY & THERAPEUTICS, 1997, 74 (01) :1-20
[30]   Designing the selenium and vitamin E cancer prevention trial (SELECT) [J].
Lippman, SM ;
Goodman, PJ ;
Klein, EA ;
Parnes, HL ;
Thompson, IM ;
Kristal, AR ;
Santella, RM ;
Probstfield, JL ;
Moinpour, CM ;
Albanes, D ;
Taylor, PR ;
Minasian, LM ;
Hoque, A ;
Thomas, SM ;
Crowley, JJ ;
Gaziano, JM ;
Stanford, JL ;
Cook, ED ;
Fleshner, NE ;
Lieber, MM ;
Walther, PJ ;
Khuri, FR ;
Karp, DD ;
Schwartz, GG ;
Ford, LG ;
Coltman, CA .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2005, 97 (02) :94-102