Efficient processing of primary microRNA hairpins by drosha requires flanking nonstructured RNA sequences

被引:203
作者
Zeng, Y
Cullen, BR
机构
[1] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Ctr Virol, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M504714200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drosha is a member of the ribonuclease ( RNase) III family that selectively processes RNAs with prominent double-stranded features. Drosha plays a key role in the generation of precursor microRNAs from primary microRNA (pri-miRNA) transcripts in animal cells, yet how Drosha recognizes its RNA substrates remains incompletely understood. Previous studies have indicated that, within the context of a larger pri-miRNA, an similar to 80-nucleotide-long RNA hairpin structure is necessary for processing by Drosha. Here, by performing in vitro Drosha processing reactions with RNA substrates of various sizes and structures, we show that Drosha function also requires single-stranded RNA extensions located outside the pri-miRNA hairpin. The sequence of these RNA extensions was largely unimportant, but a strong secondary structure within the extension or a blunt-ended pri-miRNA hairpin blocked Drosha cleavage. The requirement for single-stranded extensions on the pri-miRNA hairpin substrate for Drosha processing is currently unique among the RNase III enzymes.
引用
收藏
页码:27595 / 27603
页数:9
相关论文
共 22 条
[1]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[2]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[3]   Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III [J].
Chanfreau, C ;
Buckle, M ;
Jacquier, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3142-3147
[4]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[5]   Processing of primary microRNAs by the Microprocessor complex [J].
Denli, AM ;
Tops, BBJ ;
Plasterk, RHA ;
Ketting, RF ;
Hannon, GJ .
NATURE, 2004, 432 (7014) :231-235
[6]   SOLUBILIZATION AND PURIFICATION OF ENZYMATICALLY ACTIVE GLUTATHIONE-S-TRANSFERASE (PGEX) FUSION PROTEINS [J].
FRANGIONI, JV ;
NEEL, BG .
ANALYTICAL BIOCHEMISTRY, 1993, 210 (01) :179-187
[7]   The Microprocessor complex mediates the genesis of microRNAs [J].
Gregory, RI ;
Yan, KP ;
Amuthan, G ;
Chendrimada, T ;
Doratotaj, B ;
Cooch, N ;
Shiekhattar, R .
NATURE, 2004, 432 (7014) :235-240
[8]   The Drosha-DGCR8 complex in primary microRNA processing [J].
Han, JJ ;
Lee, Y ;
Yeom, KH ;
Kim, YK ;
Jin, H ;
Kim, VN .
GENES & DEVELOPMENT, 2004, 18 (24) :3016-3027
[9]   Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage [J].
Lamontagne, B ;
Abou Elela, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :2231-2241
[10]   Sequence dependence of substrate recognition and cleavage by yeast RNase III [J].
Lamontagne, B ;
Ghazal, G ;
Lebars, I ;
Yoshizawa, S ;
Fourmy, D ;
Abou Elela, S .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (05) :985-1000