Reconstructing the discrete Wigner function and some properties of the measurement bases -: art. no. 012106

被引:33
作者
Asplund, R [1 ]
Björk, G [1 ]
机构
[1] Royal Inst Technol, Dept Elect, SE-16440 Kista, Sweden
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 01期
关键词
D O I
10.1103/PhysRevA.64.012106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive a direct reconstruction algorithm for the discrete Wigner function through different types of measurements. For a system described in a Hilbert space of dimension N=N-1...N-p, where the numbers N-i are prime, the reconstruction is accomplished with (N-1+1)...(N-p+1) factorable (local) von Neumann measurements. For the special case where the dimension is a power of a prime, the reconstruction can be performed in a much more efficient way using N+1 complementary measurements. If the system is composed of a number of smaller subsystems, these measurements will then in general be nonseparable.
引用
收藏
页数:9
相关论文
共 32 条
[11]   Quantum-state estimation by self-learning measurements [J].
Fischer, DG ;
Kienle, SH ;
Freyberger, M .
PHYSICAL REVIEW A, 2000, 61 (03) :6
[12]   DETERMINATION OF QUANTUM STATE BY MEASUREMENTS [J].
GALE, W ;
GUTH, E ;
TRAMMELL, GT .
PHYSICAL REVIEW, 1968, 165 (05) :1434-&
[13]   Analogy between optimal spin estimation and interferometry [J].
Hradil, Z ;
Dusek, M .
OPTICS COMMUNICATIONS, 2000, 182 (4-6) :361-367
[14]   GEOMETRICAL DESCRIPTION OF QUANTAL STATE DETERMINATION [J].
IVANOVIC, ID .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (12) :3241-3245
[15]   Minimal optimal generalized quantum measurements [J].
Latorre, JI ;
Pascual, P ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1351-1354
[16]   Discrete Wigner function and quantum-state tomography [J].
Leonhardt, U .
PHYSICAL REVIEW A, 1996, 53 (05) :2998-3013
[17]   QUANTUM-STATE TOMOGRAPHY AND DISCRETE WIGNER FUNCTION [J].
LEONHARDT, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4101-4105
[18]  
Leonhardt U., 1997, Measuring the quantum state of light
[19]   OPTIMAL EXTRACTION OF INFORMATION FROM FINITE QUANTUM ENSEMBLES [J].
MASSAR, S ;
POPESCU, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1259-1263
[20]   MEASURABILITY OF SPIN DENSITY MATRIX [J].
NEWTON, RG ;
YOUNG, BL .
ANNALS OF PHYSICS, 1968, 49 (03) :393-&