Mobius-like mappings and their use in kernel density estimation

被引:17
作者
Clements, A [1 ]
Hurn, S
Lindsay, K
机构
[1] Queensland Univ Technol, Sch Econ & Finance, Brisbane, Qld 4001, Australia
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
algebraic mapping; curvature; integrated squared error; nonparametric estimation;
D O I
10.1198/016214503000000945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the manipulation of sample data by means of a parametric function can improve the performance of kernel density estimation. This article proposes a two-parameter Mobius-like function to map sample data drawn from a semi-infinite space into [-1, 1). A standard kernel method is then used to estimate the density. The proposed method is shown to yield effective estimates of density and is computationally more efficient than other well-known transformation methods. The efficacy of the technique is demonstrated in a practical setting by application to two datasets.
引用
收藏
页码:993 / 1000
页数:8
相关论文
共 15 条
[1]   Kernel density estimation of actuarial loss functions [J].
Bolancé, C ;
Guillen, M ;
Nielsen, JP .
INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01) :19-36
[2]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[3]  
CHATTERJEE S, 1995, CASEBOOK FIRST COURS
[4]  
Habbema JD, 1974, COMPSTAT 1974, P101
[5]  
HALL P, 1991, BIOMETRIKA, V78, P263
[6]  
Jones MC, 1996, COMPUTATION STAT, V11, P337
[7]   A brief survey of bandwidth selection for density estimation [J].
Jones, MC ;
Marron, JS ;
Sheather, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :401-407
[8]   AN EMPIRICAL-INVESTIGATION OF THE SHIFTED POWER TRANSFORMATION METHOD IN DENSITY-ESTIMATION [J].
PARK, BU ;
CHUNG, SS ;
SEOG, KH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (02) :183-191
[9]   BIAS REDUCTION IN KERNEL DENSITY-ESTIMATION BY SMOOTHED EMPIRICAL TRANSFORMATIONS [J].
RUPPERT, D ;
CLINE, DBH .
ANNALS OF STATISTICS, 1994, 22 (01) :185-210
[10]  
RUPPERT D, 1992, AUST J STAT, V34, P19, DOI DOI 10.1111/j.1467-842X.1992.tb01039.x