Kernel density estimation of actuarial loss functions

被引:57
作者
Bolancé, C
Guillen, M
Nielsen, JP
机构
[1] Univ Barcelona, Dept Econometr, Barcelona 08034, Spain
[2] Actuarial Prod Dev Codan, DK-1790 Copenhagen V, Denmark
关键词
actuarial loss models; transformation; skewness; weighted integrated squared error;
D O I
10.1016/S0167-6687(02)00191-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we estimate actuarial loss functions based on a symmetrized version of the semiparametric transformation approach to kernel smoothing. We apply this method to an actuarial study of automobile claims. The method gives a good overall impression while estimating actuarial loss functions, since it is capable of estimating both the initial mode and the heavy tail that is so typical for actuarial and other economic loss distributions. We study the properties of the transformation kernel density estimation and show the differences with the multiplicative bias corrected estimator. We add insight into the kernel smoothing transformation method through an extensive simulation study with a particular view to the performance of the estimation at the tail. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 23 条
[1]  
BOLANCE C, 2000, 4 AARH SCH BUS DEP F
[2]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2
[3]  
Gasser T., 1979, LECT NOTES MATH, P23, DOI DOI 10.1007/BFB0098489
[4]   MOVING WEIGHTED AVERAGE GRADUATION USING KERNEL ESTIMATION [J].
GAVIN, J ;
HABERMAN, S ;
VERRALL, R .
INSURANCE MATHEMATICS & ECONOMICS, 1993, 12 (02) :113-126
[5]  
Gavin JB, 1994, J I ACTUARIES, V121, P119
[6]   USING THE BOOTSTRAP TO ESTIMATE MEAN SQUARED ERROR AND SELECT SMOOTHING PARAMETER IN NONPARAMETRIC PROBLEMS [J].
HALL, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 32 (02) :177-203
[7]  
HALL P, 1987, STAT PROBABILITY LET, V6, P407
[8]   NONPARAMETRIC DENSITY-ESTIMATION WITH A PARAMETRIC START [J].
HJORT, NL ;
GLAD, IK .
ANNALS OF STATISTICS, 1995, 23 (03) :882-904
[9]   ASYMPTOTICS FOR THE TRANSFORMATION KERNEL DENSITY ESTIMATOR [J].
HOSSJER, O ;
RUPPERT, D .
ANNALS OF STATISTICS, 1995, 23 (04) :1198-1222
[10]  
Johnson NL, 1994, WILEY SERIES PROBABI, V1