Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model

被引:100
作者
Cincio, Lukasz [1 ]
Dziarmaga, Jacek
Rams, Marek M.
机构
[1] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
关键词
D O I
10.1103/PhysRevLett.100.240603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a symmetric version of the multiscale entanglement renormalization ansatz in two spatial dimensions (2D) and use this ansatz to find an unknown ground state of a 2D quantum system. Results in the simple 2D quantum Ising model on the 8x8 square lattice are found to be very accurate even with the smallest nontrivial truncation parameter.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Density-matrix spectra for two-dimensional quantum systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2000, 62 (07) :4191-4193
[2]   Unifying variational methods for simulating quantum many-body systems [J].
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[3]  
EVENBLY G, ARXIV07100692, P12720
[6]   Variational treatment of the Shastry-Sutherland antiferromagnet using projected entangled pair states [J].
Isacsson, A. ;
Syljuasen, Olav F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[7]  
JORDAN J, ARXIVCONDMAT0703788
[8]   Contractor renormalization group technology and exact Hamiltonian real-space renormalization group transformations [J].
Morningstar, CJ ;
Weinstein, M .
PHYSICAL REVIEW D, 1996, 54 (06) :4131-4151
[9]   Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states [J].
Murg, V. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW A, 2007, 75 (03)
[10]   Self-consistent tensor product variational approximation for 3D classical models [J].
Nishino, T ;
Okunishi, K ;
Hieida, Y ;
Maeshima, N ;
Akutsu, Y .
NUCLEAR PHYSICS B, 2000, 575 (03) :504-512