Anatomy of a chaotic attractor: Subtle model-predicted patterns revealed in population data

被引:23
作者
King, AA [1 ]
Costantino, RF
Cushing, JM
Henson, SM
Desharnais, RA
Dennis, B
机构
[1] Univ Tennessee, Dept Ecol & Evolut Biol, Knoxville, TN 37996 USA
[2] Univ Arizona, Dept Ecol & Evolut Biol, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Math, Interdisciplinary Program Appl Math, Tucson, AZ 85721 USA
[4] Andrews Univ, Dept Math, Berrien Springs, MI 49104 USA
[5] Calif State Univ Los Angeles, Dept Biol Sci, Los Angeles, CA 90032 USA
[6] Univ Idaho, Dept Fish & Wildlife Resources, Moscow, ID 83844 USA
[7] Univ Idaho, Div Stat, Moscow, ID 83844 USA
关键词
D O I
10.1073/pnas.2237266100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematically, chaotic dynamics are not devoid of order but display episodes of near-cyclic temporal patterns. This is illustrated, in interesting ways, in the case of chaotic biological populations. Despite the individual nature of organisms and the noisy nature of biological time series, subtle temporal patterns have been detected. By using data drawn from chaotic insect populations, we show quantitatively that chaos manifests itself as a tapestry of identifiable and predictable patterns woven together by stochasticity. We show too that the mixture of patterns an experimentalist can expect to see depends on the scale of the system under study.
引用
收藏
页码:408 / 413
页数:6
相关论文
共 46 条
[1]   Unstable periodic orbits and discretization cycles [J].
Binder, PM ;
Okamoto, NH .
PHYSICAL REVIEW E, 2003, 68 (04)
[2]   Noisy clockwork: Time series analysis of population fluctuations in animals [J].
Bjornstad, ON ;
Grenfell, BT .
SCIENCE, 2001, 293 (5530) :638-643
[3]   Chaotic dynamics in an insect population [J].
Costantino, RF ;
Desharnais, RA ;
Cushing, JM ;
Dennis, B .
SCIENCE, 1997, 275 (5298) :389-391
[4]   A chaotic attractor in ecology: theory and experimental data [J].
Cushing, JM ;
Henson, SM ;
Desharnais, RA ;
Dennis, B ;
Costantino, RF ;
King, A .
CHAOS SOLITONS & FRACTALS, 2001, 12 (02) :219-234
[5]   Moving toward an unstable equilibrium: saddle nodes in population systems [J].
Cushing, JM ;
Dennis, B ;
Desharnais, RA ;
Costantino, RF .
JOURNAL OF ANIMAL ECOLOGY, 1998, 67 (02) :298-306
[6]  
CUSHING JM, 2003, CHAOS ECOLOGY EXPT N, V1
[7]  
Dennis B, 2001, ECOL MONOGR, V71, P277, DOI 10.1890/0012-9615(2001)071[0277:ECACDI]2.0.CO
[8]  
2
[9]   Can noise induce chaos? [J].
Dennis, B ;
Desharnais, RA ;
Cushing, JM ;
Henson, SM ;
Costantino, RF .
OIKOS, 2003, 102 (02) :329-339
[10]   Analyses of transient chaotic time series [J].
Dhamala, M. ;
Lai, Y.-C. ;
Kostelich, E.J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II) :1-056207