Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations

被引:817
作者
Sheffield, Justin [1 ]
Wood, Eric F. [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s00382-007-0340-z
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twentieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observation forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and frequency of short-term (4-6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between scenarios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite following a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher temperatures modulating the changes. In some regions, increases in precipitation are offset by increased evaporation. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961-1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate variables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.
引用
收藏
页码:79 / 105
页数:27
相关论文
共 89 条
  • [21] 2
  • [22] Tropical forests and climate policy
    Gullison, Raymond E.
    Frumhoff, Peter C.
    Canadell, Josep G.
    Field, Christopher B.
    Nepstad, Daniel C.
    Hayhoe, Katharine
    Avissar, Roni
    Curran, Lisa M.
    Friedlingstein, Pierre
    Jones, Chris D.
    Nobre, Carlos
    [J]. SCIENCE, 2007, 316 (5827) : 985 - 986
  • [23] GUO ZC, 2006, J GEOPHYS RES-ATMOS, V111, P14
  • [24] Improving the quality of simulated soil moisture with a multi-model ensemble approach
    Guo, Zhichang
    Dirmeyer, Paul A.
    Gao, Xiang
    Zhao, Mei
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (624) : 731 - 747
  • [25] Haddeland I, 2007, HYDROL EARTH SYST SC, V11, P1035
  • [26] GISS analysis of surface temperature change
    Hansen, J
    Ruedy, R
    Glascoe, J
    Sato, M
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D24) : 30997 - 31022
  • [27] Global temperature change
    Hansen, James
    Sato, Makiko
    Ruedy, Reto
    Lo, Ken
    Lea, David W.
    Medina-Elizade, Martin
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (39) : 14288 - 14293
  • [28] The challenge of long-term climate change
    Hasselmann, K
    Latif, M
    Hooss, G
    Azar, C
    Edenhofer, O
    Jaeger, CC
    Johannessen, OM
    Kemfert, C
    Welp, M
    Wokaun, A
    [J]. SCIENCE, 2003, 302 (5652) : 1923 - 1925
  • [29] Climate change detection and attribution: Beyond mean temperature signals
    Hegerl, Gabriele C.
    Karl, Thomas R.
    Allen, Myles
    Bindoff, Nathaniel L.
    Gillett, Nathan
    Karoly, David
    Zhang, Xuebin
    Zwiers, Francis
    [J]. JOURNAL OF CLIMATE, 2006, 19 (20) : 5058 - 5077
  • [30] Water vapor feedback and global warming
    Held, IM
    Soden, BJ
    [J]. ANNUAL REVIEW OF ENERGY AND THE ENVIRONMENT, 2000, 25 : 441 - 475