Modeling uncertainty in the measurement of low-level analytes in environmental analysis

被引:16
作者
Rocke, DM [1 ]
Durbin, B
Wilson, M
Kahn, HD
机构
[1] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, Div Biostat, Davis, CA 95616 USA
[3] US EPA, Washington, DC 20460 USA
关键词
D O I
10.1016/S0147-6513(03)00052-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of analytical chemistry measurements in environmental monitoring is dependent on an assessment of measurement error. Models for variation in measurements are needed to quantify uncertainty in measurements, set limits of detection, and preprocess data for more sophisticated analysis in prediction, classification, and clustering. This article explains how a two-component error model can be used to accomplish all of these objectives. In addition, we present applications to quantitating biomarkers of exposure to toxic substances using gene expression microarrays. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 92
页数:15
相关论文
共 16 条
[11]   DECISION AND DETECTION LIMITS FOR LINEAR CALIBRATION CURVES [J].
HUBAUX, A ;
VOS, G .
ANALYTICAL CHEMISTRY, 1970, 42 (08) :849-&
[12]  
LITEANU C, 1980, STAT THEORY METHODOL
[13]  
Meier PC, 1993, STAT METHODS ANAL CH
[14]   A model for measurement error for gene expression arrays [J].
Rocke, DM ;
Durbin, B .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (06) :557-569
[15]   A 2-COMPONENT MODEL FOR MEASUREMENT ERROR IN ANALYTICAL-CHEMISTRY [J].
ROCKE, DM ;
LORENZATO, S .
TECHNOMETRICS, 1995, 37 (02) :176-184
[16]  
WILSON M, 2001, UNPUB APPL ENV MONIT