Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome

被引:129
作者
Sharma, Shalini [1 ]
Kohlstaedt, Lori A. [2 ]
Damianov, Andrey [1 ]
Rio, Donald C. [3 ]
Black, Douglas L. [1 ,4 ]
机构
[1] Univ Calif Los Angeles, Howard Hughes Med Inst, MRL5 748, Los Angeles, CA 90095 USA
[2] Univ Calif Berkeley, Canc Res Lab, Mass Spectrometry Facil, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif Los Angeles, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
关键词
D O I
10.1038/nsmb.1375
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The polypyrimidine tract binding protein (PTB) binds pre-mRNAs to alter splice-site choice. We characterized a series of spliceosomal complexes that assemble on a pre-mRNA under conditions of either PTB-mediated splicing repression or its absence. In the absence of repression, exon definition complexes that were assembled downstream of the regulated exon could progress to pre-spliceosomal A complexes and functional spliceosomes. Under PTB-mediated repression, assembly was arrested at an A-like complex that was unable to transition to spliceosomal complexes. Trans-splicing experiments indicated that, even when the U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) are properly bound to the upstream and downstream exons, the presence of PTB prevents the interaction of the two exon complexes. Proteomic analyses of these complexes provide a new description of exon definition complexes, and indicate that splicing regulators can act on the transition between the exon definition complex and an intron-defined spliceosome.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 60 条
[1]   Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals [J].
Abovich, N ;
Rosbash, M .
CELL, 1997, 89 (03) :403-412
[2]   Exon repression by polypyrimidine tract binding protein [J].
Amir-Ahmady, B ;
Boutz, PL ;
Markovtsov, V ;
Phillips, ML ;
Black, DL .
RNA, 2005, 11 (05) :699-716
[3]   Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes [J].
Behzadnia, Nastaran ;
Golas, Monika M. ;
Hartmuth, Klaus ;
Sander, Bjoern ;
Kastner, Berthold ;
Deckert, Jochen ;
Dube, Prakash ;
Will, Cindy L. ;
Urlaub, Henning ;
Stark, Holger ;
Luerhrmann, Reinhard .
EMBO JOURNAL, 2007, 26 (06) :1737-1748
[4]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[5]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[6]   ACTIVATION OF C-SRC NEURON-SPECIFIC SPLICING BY AN UNUSUAL RNA ELEMENT INVIVO AND INVITRO [J].
BLACK, DL .
CELL, 1992, 69 (05) :795-807
[7]  
BLACK DL, 1995, RNA, V1, P763
[8]   The SRm160/300 splicing coactivator subunits [J].
Blencowe, BJ ;
Baurén, G ;
Eldridge, AG ;
Issner, R ;
Nickerson, JA ;
Rosonina, E ;
Sharp, PA .
RNA, 2000, 6 (01) :111-120
[9]   Allosteric cascade of spliceosome activation [J].
Brow, DA .
ANNUAL REVIEW OF GENETICS, 2002, 36 :333-360
[10]   ENHANCER-DEPENDENT INTERACTION BETWEEN 5' AND 3' SPLICE SITES IN TRANS [J].
BRUZIK, JP ;
MANIATIS, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :7056-7059