An invariant second variation in optimal control

被引:24
作者
Agrachev, A
Stefani, G
Zezza, P
机构
[1] VA Steklov Math Inst, Moscow 117966, Russia
[2] Dipartimento Matemat Applicata, I-50139 Florence, Italy
[3] Dipartimento Matemat DEFAS, I-50134 Florence, Italy
关键词
D O I
10.1080/002071798221533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For an optimal control problem we define a second variation which is invariant under change of coordinates, and realize it as a linear-quadratic problem. When the strong Legendre condition is satisfied we give a complete Hamiltonian characterization of the index and of the nullity of the second variation.
引用
收藏
页码:689 / 715
页数:27
相关论文
共 25 条
[1]  
Abraham R., 1983, MANIFOLDS TENSOR ANA
[2]  
AGRACHEV A, 1997, IN PRESS AMS P BOULD
[3]  
Agrachev A.A., 1998, P STEKLOV I MATH, V220, p[4, 8]
[4]   Abnormal sub-Riemannian geodesics: Morse index and rigidity [J].
Agrachev, AA ;
Sarychev, AV .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06) :635-690
[5]  
AGRACHEV AA, 1997, GEOMETRY FEEDBACK OP, P1
[6]  
AGRACHEV AA, 1989, ITOGI NAUKI VINITI S, V35, P109
[7]  
AGRACHEV AA, 1995, J MATH SYSTEMS ESTIM, V5, P127
[8]   A SURVEY OF NETWORK RELIABILITY AND DOMINATION THEORY [J].
AGRAWAL, A ;
BARLOW, RE .
OPERATIONS RESEARCH, 1984, 32 (03) :478-492
[9]  
[Anonymous], 1980, MATH METHODS CLASSIC
[10]   CONTROLLABILITY ALONG A TRAJECTORY - A VARIATIONAL APPROACH [J].
BIANCHINI, RM ;
STEFANI, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :900-927