An invariant second variation in optimal control

被引:24
作者
Agrachev, A
Stefani, G
Zezza, P
机构
[1] VA Steklov Math Inst, Moscow 117966, Russia
[2] Dipartimento Matemat Applicata, I-50139 Florence, Italy
[3] Dipartimento Matemat DEFAS, I-50134 Florence, Italy
关键词
D O I
10.1080/002071798221533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For an optimal control problem we define a second variation which is invariant under change of coordinates, and realize it as a linear-quadratic problem. When the strong Legendre condition is satisfied we give a complete Hamiltonian characterization of the index and of the nullity of the second variation.
引用
收藏
页码:689 / 715
页数:27
相关论文
共 25 条
[11]  
Giaquinta M, 1996, CALCULUS VARIATIONS
[12]  
Giaquinta Mariano, 1996, CALCULUS VARIATIONS, VI
[13]  
Hestenes M., 1951, PAC J MATH, V1, P525, DOI DOI 10.2140/PJM
[14]  
Hestenes M.R., 1966, CALCULUS VARIATIONS
[15]  
KNOBLOCH HW, 1981, LECT NOTES CONTROL I, V34
[16]   HIGH-ORDER MAXIMAL PRINCIPLE AND ITS APPLICATION TO SINGULAR EXTREMALS [J].
KRENER, AJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (02) :256-293
[18]  
Marsden J., 1994, INTRO MECH SYMMETRY
[19]  
Morse Marston, 1934, The calculus of variations in the large, V18
[20]   NONSMOOTH OPTIMUM PROBLEMS WITH CONSTRAINTS [J].
PALES, Z ;
ZEIDAN, VM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (05) :1476-1502