A graph model for e-commerce recommender systems

被引:120
作者
Huang, Z [1 ]
Chung, WY [1 ]
Chen, HC [1 ]
机构
[1] Univ Arizona, Dept Management Informat Syst, Artificial Intelligence Lab, Tucson, AZ 85721 USA
来源
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY | 2004年 / 55卷 / 03期
关键词
D O I
10.1002/asi.10372
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Information overload on the Web has created enormous challenges to customers selecting products for online purchases and to online businesses attempting to identify customers' preferences efficiently. Various recommender systems employing different data representations and recommendation methods are currently used to address these challenges. In this research, we developed a graph model that provides a generic data representation and can support different recommendation methods. To demonstrate its usefulness and flexibility, we developed three recommendation methods: direct retrieval, association mining, and high-degree association retrieval. We used a data set from an online bookstore as our research test-bed. Evaluation results showed that combining product content information and historical customer transaction information achieved more accurate predictions and relevant recommendations than using only collaborative information. However, comparisons among different methods showed that high-degree association retrieval did not perform significantly better than the association mining method or the direct retrieval method in our test-bed.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 49 条