How to build aggregation operators from data

被引:85
作者
Beliakov, G [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood 3125, Australia
关键词
D O I
10.1002/int.10120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article discusses a range of regression techniques specifically tailored to building aggregation operators from empirical data. These techniques identify optimal parameters of aggregation operators from various classes (triangular norms, uninorms, copulas, ordered weighted aggregation (OWA), generalized means, and compensatory and general aggregation operators), while allowing one to preserve specific properties such as commutativity or associativity. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:903 / 923
页数:21
相关论文
共 42 条
[1]  
Aczel J., 1969, APPL THEORY FUNCTION
[2]  
[Anonymous], 2000, APPROXIMATION THEORY
[3]  
[Anonymous], 1995, Handbook of global optimization, Nonconvex Optimization and its Applications
[4]  
BAGIROV A, 1999, J INVESTIGACAO OPERA, V19, P75
[5]   Fast algorithm for the cutting angle method of global optimization [J].
Batten, LM ;
Beliakov, G .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) :149-161
[6]   Monotone approximation of aggregation operators using least squares splines [J].
Beliakov, G .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2002, 10 (06) :659-676
[7]  
Beliakov G, 2002, STUD FUZZ SOFT COMP, V90, P159
[8]   Appropriate choice of aggregation operators in fuzzy decision support systems [J].
Beliakov, G ;
Warren, J .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (06) :773-784
[9]  
BELIAKOV G, 2000, INFORMATION PROCESSI, P680
[10]  
BELIAKOV G, 2001, FUZZ IEEE