Fast algorithm for the cutting angle method of global optimization

被引:26
作者
Batten, LM [1 ]
Beliakov, G [1 ]
机构
[1] Deakin Univ, Sch Comp & Math, Burwood 3125, Australia
关键词
Numerical Experiment; Global Optimization; Real Function; Mathematical Description; Fast Algorithm;
D O I
10.1023/A:1020256900863
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The cutting angle method for global optimization was proposed in 1999 by Andramonov et al. (Appl. Math. Lett. 12 (1999) 95). Computer implementation of the resulting algorithm indicates that running time could be improved with appropriate modifications to the underlying mathematical description. In this article, we describe the initial algorithm and introduce a new one which we prove is significantly faster at each stage. Results of numerical experiments performed on a Pentium III 750 Mhz processor are presented.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 14 条
[1]   Cutting angle methods in global optimization [J].
Andramonov, M ;
Rubinov, A ;
Glover, B .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :95-100
[2]  
BAGIROV A, 1999, J INVESTIGACAO OPERA, V19, P75
[3]  
BAGIROV A, 2001, CONVEX ANAL GLOBAL O, V54
[4]   Global minimization of increasing positively homogeneous functions over the unit simplex [J].
Bagirov, AM ;
Rubinov, AM .
ANNALS OF OPERATIONS RESEARCH, 2000, 98 (1-4) :171-187
[5]  
Floudas C.A, 2000, NONCON OPTIM ITS APP, DOI 10.1007/978-1-4757-4949-6
[6]  
Hansen P., 1995, HDB GLOBAL OPTIMIZAT
[7]  
HAUPTMAN H, 1996, DIMACS SERIES DISCRE, V23
[8]  
MARANAS CD, 1996, DIMACS SERIES DISCRE, V23, P133
[9]   AN ALGORITHM FOR FINDING THE GLOBAL MAXIMUM OF A MULTIMODAL, MULTIVARIATE FUNCTION [J].
MLADINEO, RH .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :188-200
[10]  
PALLACHKE D, 1997, FDN MATH OPTIMIZATIO