Synchronization in noisy systems and cardiorespiratory interaction

被引:77
作者
Rosenblum, MG [1 ]
Kurths, J [1 ]
Pikovsky, A [1 ]
Schafer, C [1 ]
Tass, P [1 ]
Abel, HH [1 ]
机构
[1] Univ Potsdam, Dept Phys, D-14415 Potsdam, Germany
来源
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE | 1998年 / 17卷 / 06期
关键词
D O I
10.1109/51.731320
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A unified approach to synchronization of noisy and chaotic systems is described. The approach can be used to address the inverse problem of identification of the presence of weak interaction between natural systems from bivariate data. The analysis allows researchers to learn from observations in various fields how weakly coupled complex systems interact. A previously unknown nonlinear feature of cardiorespiratory interaction, the well-expressed cardiorespiratory synchronization in humans, is discussed. Subjects with epochs of synchronization between the cardiac and respiratory rhythms have no remarkable respiratory-modulated heart rate fluctuations, whereas subjects with higher RSA exhibit no distinct epochs of cardiorespiratory synchronization.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 40 条
[31]  
ROSENBLUM MG, 1997, LECT NOTE PHYS, V484, P233
[32]   Heartbeat synchronized with ventilation [J].
Schäfer, C ;
Rosenblum, MG ;
Kurths, J ;
Abel, HH .
NATURE, 1998, 392 (6673) :239-240
[33]  
SCHIEK M, 1998, SPRINGER SERIES SYNE
[34]   Improved surrogate data for nonlinearity tests [J].
Schreiber, T ;
Schmitz, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (04) :635-638
[35]  
Stratonovich R. L., 1963, TOPICS THEORY RANDOM
[36]   PHASE-LOCKING REGIONS IN A FORCED MODEL OF SLOW INSULIN AND GLUCOSE OSCILLATIONS [J].
STURIS, J ;
KNUDSEN, C ;
OMEARA, NM ;
THOMSEN, JS ;
MOSEKILDE, E ;
VANCAUTER, E ;
POLONSKY, KS .
CHAOS, 1995, 5 (01) :193-199
[37]   Synchronization of mutually coupled chaotic systems [J].
Tang, DY ;
Heckenberg, NR .
PHYSICAL REVIEW E, 1997, 55 (06) :6618-6623
[38]  
TASS P, 1998, IN PRESS PHYS REV LE, V81
[39]   TESTING FOR NONLINEARITY IN TIME-SERIES - THE METHOD OF SURROGATE DATA [J].
THEILER, J ;
EUBANK, S ;
LONGTIN, A ;
GALDRIKIAN, B ;
FARMER, JD .
PHYSICA D, 1992, 58 (1-4) :77-94
[40]   Reconstruction of non-linear time delay models from data by the use of optimal transformations [J].
Voss, H ;
Kurths, J .
PHYSICS LETTERS A, 1997, 234 (05) :336-344