Calcium channels in the GABAergic presynaptic nerve terminals projecting to Meynert neurons of the rat

被引:112
作者
Rhee, JS [1 ]
Ishibashi, H [1 ]
Akaike, N [1 ]
机构
[1] Kyushu Univ, Fac Med, Dept Physiol, Fukuoka 8128582, Japan
关键词
presynaptic Ca2+ channels; rat Meynert neurons; inhibitory postsynaptic current;
D O I
10.1046/j.1471-4159.1999.0720800.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effects of selective Ca2+ channel blockers on GABAergic inhibitory postsynaptic currents (IPSCs) were studied in the acutely dissociated rat nucleus basalis of Meynert (nBM) neurons attached with nerve endings, namely, the "synaptic bouton" preparation, and in the thin slices of nBM, using nystatin perforated and conventional whole-cell patch recording modes, respectively. in the synaptic bouton preparation, nicardipine (3 x 10(-6) M) and omega-conotoxin-MVIIC (3 x 10(-6) M) reduced the frequency of spontaneous postsynaptic currents by 37 and 22%, respectively, whereas omega-conotoxin-GVIA had no effect. After blockade of L- and P/Q-type Ca2+ channels, successive removal of Ca2+ from external solution had no significant effect on the residual spontaneous activities, indicating that N-, R-, and T-type Ca2+ channels are not involved in the spontaneous GABA release. Thapsigargin, but not ryanodine, increased the frequency of spontaneous IPSCs in both the synaptic bouton and slice preparations, suggesting the partial contribution of the intracellular Ca2+ storage site to the spontaneous GABA release. In contrast, omega-conotoxin-GVIA (3 x 10(-6) M) and omega-conotoxin-MVIIC (3 x 10-6 M) suppressed the evoked IPSCs by 31 and 37%, respectively, but nicardipine produced no significant effect. the residual evoked currents were abolished in Ca2+-free external solution but not in the external solution containing 10(-5) M Ni2+ suggesting the involvement of N-, P/Q-, and R-type Ca2+ channels but not L- and T-type ones in the evoked IPSCs. Neither thapsigargin nor ryanodine had any significant effects on the evoked IPSCs. It was concluded that Ca2+ channel subtypes responsible for spontaneous transmitter release are different from those mediating the transmitter release evoked by nerve stimulation.
引用
收藏
页码:800 / 807
页数:8
相关论文
共 34 条
[1]   SUBUNIT STRUCTURE AND LOCALIZATION OF DIHYDROPYRIDINE-SENSITIVE CALCIUM CHANNELS IN MAMMALIAN BRAIN, SPINAL-CORD, AND RETINA [J].
AHLIJANIAN, MK ;
WESTENBROEK, RE ;
CATTERALL, WA .
NEURON, 1990, 4 (06) :819-832
[2]   GABAERGIC SYNAPTIC CURRENT IN DISSOCIATED NUCLEUS BASALIS OF MEYNERT NEURONS OF THE RAT [J].
AKAIKE, N ;
HARATA, N ;
UENO, S ;
TATEISHI, N .
BRAIN RESEARCH, 1992, 570 (1-2) :102-108
[3]   DIHYDROPYRIDINE-SENSITIVE LOW-THRESHOLD CALCIUM CHANNELS IN ISOLATED RAT HYPOTHALAMIC NEURONS [J].
AKAIKE, N ;
KOSTYUK, PG ;
OSIPCHUK, YV .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 412 :181-195
[4]   NYSTATIN PERFORATED-PATCH RECORDING AND ITS APPLICATIONS TO ANALYSES OF INTRACELLULAR MECHANISMS [J].
AKAIKE, N ;
HARATA, N .
JAPANESE JOURNAL OF PHYSIOLOGY, 1994, 44 (05) :433-473
[5]   AUTOMATIC DETECTION OF SPONTANEOUS SYNAPTIC RESPONSES IN CENTRAL NEURONS [J].
ANKRI, N ;
LEGENDRE, P ;
FABER, DS ;
KORN, H .
JOURNAL OF NEUROSCIENCE METHODS, 1994, 52 (01) :87-100
[6]  
BEAN BP, 1989, ANNU REV PHYSIOL, V51, P367, DOI 10.1146/annurev.physiol.51.1.367
[7]   CHOLINERGIC PROJECTIONS FROM THE BASAL FOREBRAIN TO FRONTAL, PARIETAL, TEMPORAL, OCCIPITAL, AND CINGULATE CORTICES - A COMBINED FLUORESCENT TRACER AND ACETYLCHOLINESTERASE ANALYSIS [J].
BIGL, V ;
WOOLF, NJ ;
BUTCHER, LL .
BRAIN RESEARCH BULLETIN, 1982, 8 (06) :727-749
[8]   THE NAMING OF VOLTAGE-GATED CALCIUM CHANNELS [J].
BIRNBAUMER, L ;
CAMPBELL, KP ;
CATTERALL, WA ;
HARPOLD, MM ;
HOFMANN, F ;
HORNE, WA ;
MORI, Y ;
SCHWARTZ, A ;
SNUTCH, TP ;
TANABE, T ;
TSIEN, RW .
NEURON, 1994, 13 (03) :505-506
[9]   CA2+ AND SECRETORY-VESICLE DYNAMICS [J].
BURGOYNE, RD ;
MORGAN, A .
TRENDS IN NEUROSCIENCES, 1995, 18 (04) :191-196
[10]   A LOW VOLTAGE-ACTIVATED, FULLY INACTIVATING CA-CHANNEL IN VERTEBRATE SENSORY NEURONS [J].
CARBONE, E ;
LUX, HD .
NATURE, 1984, 310 (5977) :501-502