An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries

被引:129
作者
Yang, Zichao [1 ]
Shen, Jingguo [1 ]
Archer, Lynden A. [1 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; NEGATIVE ELECTRODE; STORAGE; CO3O4; SNO2; CHALLENGES; REDUCTION; CAPACITY; FIBER;
D O I
10.1039/c1jm10902b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal oxides are actively investigated as anode materials for lithium-ion batteries (LIBs), and their nanocomposites with carbon frequently show better performance in galvanostatic cycling studies, compared to the pristine metal oxide. An in situ, scalable method for creating a variety of transition metal oxide-carbon nanocomposites has been developed based on free-radical polymerization and cross-linking of poly(acrylonitrile) in the presence of the metal oxide precursor containing vinyl groups. The approach yields a cross-linked polymer network, which uniformly incorporates nanometre-sized transition metal oxide particles. Thermal treatment of the organic-inorganic hybrid material produces nearly monodisperse metal oxide nanoparticles uniformly embedded in a porous carbon matrix. Cyclic voltammetry and galvanostatic cycling electrochemical measurements in a lithium half-cell are used to evaluate the electrochemical properties of a Fe(3)O(4)-carbon composite created using this approach. These measurements reveal that when used as the anode in a lithium battery, the material exhibits stable cycling performance at both low and high current densities. We further show that the polymer/nanoparticle copolymerization approach can be readily adapted to synthesize metal oxide/carbon nanocomposites based on different particle chemistries for applications in both the anode and cathode of LIBs.
引用
收藏
页码:11092 / 11097
页数:6
相关论文
共 36 条
[11]   Sn/C composite anodes for Li-ion batteries [J].
Kim, IS ;
Blomgren, GE ;
Kumta, PN .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (03) :A44-A48
[12]   The electrochemical reduction of Co3O4 in a lithium cell [J].
Larcher, D ;
Sudant, G ;
Leriche, JB ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) :A234-A241
[13]   Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J].
Liu, Hao ;
Wang, Guoxiu ;
Wang, Jiazhao ;
Wexler, David .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1879-1882
[14]   MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries [J].
Liu, Jia ;
Pan, Qinmin .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (10) :A139-A142
[15]   Advanced Sn/C composite anodes for lithium ion batteries [J].
Liu, Y ;
Xie, JY ;
Takeda, Y ;
Yang, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (06) :687-692
[16]   Hollow Micro-/Nanostructures: Synthesis and Applications [J].
Lou, Xiong Wen ;
Archer, Lynden A. ;
Yang, Zichao .
ADVANCED MATERIALS, 2008, 20 (21) :3987-4019
[17]   Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties [J].
Lou, Xiong Wen ;
Deng, Da ;
Lee, Jim Yang ;
Archer, Lynden A. .
CHEMISTRY OF MATERIALS, 2008, 20 (20) :6562-6566
[18]   Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J].
Lou, Xiong Wen ;
Deng, Da ;
Lee, Jim Yang ;
Feng, Ji ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2008, 20 (02) :258-+
[19]   Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity [J].
Lou, Xiong Wen ;
Wang, Yong ;
Yuan, Chongli ;
Lee, Jim Yang ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2006, 18 (17) :2325-+
[20]   Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage [J].
Lou, Xiong Wen ;
Li, Chang Ming ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2009, 21 (24) :2536-+