Bounds on general entropy measures

被引:32
作者
Berry, DW [1 ]
Sanders, BC [1 ]
机构
[1] Macquarie Univ, Dept Phys, Australian Ctr Quantum Comp Technol, Sydney, NSW 2109, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 49期
关键词
D O I
10.1088/0305-4470/36/49/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to determine the maximum and minimum possible values of one measure of entropy for a given value of another measure of entropy. These maximum and minimum values are obtained for two standard forms of probability distribution (or quantum state) independent of the entropy measures, provided the entropy measures satisfy a concavity/convexity relation. These results may be applied to entropies for classical probability distributions, entropies of mixed quantum states and measures of entanglement for pure states.
引用
收藏
页码:12255 / 12265
页数:11
相关论文
共 9 条
[1]   Inequalities between entropy and index of coincidence derived from information diagrams [J].
Harremoës, P ;
Topsoe, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2944-2960
[2]   Bounds on entanglement in qudit subsystems [J].
Kendon, VM ;
Zyczkowski, K ;
Munro, WJ .
PHYSICAL REVIEW A, 2002, 66 (06) :7
[3]  
Ohya M., 1993, QUANTUM ENTROPY ITS
[4]  
RENYI A, 1970, PROBABILITY THEORK
[5]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[6]   Entangling power and operator entanglement in qudit systems [J].
Wang, XG ;
Sanders, BC ;
Berry, DW .
PHYSICAL REVIEW A, 2003, 67 (04) :8
[7]  
Wehrl A., 1976, Reports on Mathematical Physics, V10, P159, DOI 10.1016/0034-4877(76)90037-9
[8]   Maximal entanglement versus entropy for mixed quantum states [J].
Wei, TC ;
Nemoto, K ;
Goldbart, PM ;
Kwiat, PG ;
Munro, WJ ;
Verstraete, F .
PHYSICAL REVIEW A, 2003, 67 (02) :12
[9]   Renyi extrapolation of Shannon entropy [J].
Zyczkowski, K .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2003, 10 (03) :297-310