Chronic treatment with cyclosporin A (CsA) has been reported (H. S. Banijarrmali, M. H. ter Keurs, L. C. Paul, and H. E. ter Keurs. Cardiovasc. Res. 27: 1845-1854, 1993; I. Kingma, E. Harmsen, H. E. ter Keurs, H. Benediktsson, and L. C. Paul. Int. J. Cardiol. 31: 15-22, 1991) to induce reversible alterations of contractile properties in rat hearts. To define the molecular mechanisms underlying the physiological alterations, the Ca2+-release channel (CRC) and Ca2+-ATPase from sarcoplasmic reticulum in rats were examined. Ryanodine binding to whole homogenates of rat hearts shows time- and dose-dependent alterations in CRC properties by CsA. On 3 wk of treatment with 15 mg CsA.kg body wt(-1) day(-1), 1)maximal ryanodine binding (B-max) decreased, 2) the dissociation constant of ryanodine (K-d) increased, 3) caffeine sensitivity of CRC increased, and 4) ruthenium red sensitivity of CRC decreased. On the other hand, B-max and K-d Of ryanodine binding in rat skeletal muscles were not changed. Ryanodine-sensitive oxalate-supported Ca2+ uptake in whole homogenates was lower in CsA-treated rat hearts than in control hearts, whereas total Ca2+ uptake in the presence of 500 M ryanodine was not changed. Functional experiments with rapamycin and Western blot analysis suggest that the CsA-induced alteration of ryanodine binding is due at least in part to an upregulation of calcineurin. The heart muscle-specific alterations of CRC could be responsible for the previously reported contractile changes of CsA-treated rat hearts.