Strain engineering water transport in graphene nanochannels

被引:119
作者
Xiong, Wei [1 ,2 ]
Liu, Jefferson Zhe [3 ]
Ma, Ming [1 ,2 ]
Xu, Zhiping [1 ,2 ]
Sheridan, John [3 ]
Zheng, Quanshui [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[3] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
[4] Nanchang Univ, Inst Adv Study, Nanchang, Peoples R China
基金
美国国家科学基金会;
关键词
BOUNDARY-CONDITIONS; MOLECULAR-DYNAMICS; CARBON NANOTUBES; FLOW; MOTION; SLIP;
D O I
10.1103/PhysRevE.84.056329
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using equilibrium and nonequilibrium molecular dynamic simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nanochannels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nanochannel devices.
引用
收藏
页数:7
相关论文
共 44 条
[1]  
Allen M. P., 1989, Computer Simulation of Liquids, DOI DOI 10.1007/BF00646086
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   Thermostating highly confined fluids [J].
Bernardi, Stefano ;
Todd, B. D. ;
Searles, Debra J. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (24)
[4]   HYDRODYNAMIC BOUNDARY-CONDITIONS, CORRELATION-FUNCTIONS, AND KUBO RELATIONS FOR CONFINED FLUIDS [J].
BOCQUET, L ;
BARRAT, JL .
PHYSICAL REVIEW E, 1994, 49 (04) :3079-3092
[5]   Flow boundary conditions from nano- to micro-scales [J].
Bocquet, Lyderic ;
Barrat, Jean-Louis .
SOFT MATTER, 2007, 3 (06) :685-693
[6]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[7]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[8]   Effects of strain on electronic properties of graphene [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
PHYSICAL REVIEW B, 2010, 81 (08)
[9]   Harvesting Energy from Water Flow over Graphene [J].
Dhiman, Prashant ;
Yavari, Fazel ;
Mi, Xi ;
Gullapalli, Hemtej ;
Shi, Yunfeng ;
Ajayan, Pulickel M. ;
Koratkar, Nikhil .
NANO LETTERS, 2011, 11 (08) :3123-3127
[10]   FORCE AUTOCORRELATION FUNCTION IN BROWNIAN-MOTION THEORY [J].
ESPANOL, P ;
ZUNIGA, I .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (01) :574-580