Statistical approach to some ill-posed problems for linear partial differential equations

被引:15
作者
Chow, PL [1 ]
Ibragimov, IA
Khasminskii, RZ
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] VA Steklov Math Inst, St Peterburg Branch, St Petersburg 191011, Russia
关键词
Mathematics Subject Classification (1991): 60G, 62G, 35R;
D O I
10.1007/s004400050212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For linear partial differential equations, some inverse source problems are treated statistically based on nonparametric estimation ideas. By observing the solution in a small Gaussian white noise, the kernel type of estimators is used to estimate the unknown source function and its partial derivatives.. It is proved that such estimators are consistent as the noise intensity tends to zero. Depending on the principal part of the differential operator, the optimal asymptotic rate of convergence is ascertained within a wide class of risk functions in a minimax sense.
引用
收藏
页码:421 / 441
页数:21
相关论文
共 21 条
[1]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[2]   Statistical approach to dynamical inverse problems [J].
Chow, PL ;
Khasminskii, RZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) :521-531
[3]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[4]   ON OPTIMAL-SOLUTIONS OF THE DECONVOLUTION PROBLEM [J].
ERMAKOV, M .
INVERSE PROBLEMS, 1990, 6 (05) :863-872
[6]  
Friedman A., 1969, Partial Differential Equations
[7]  
GIKHMAN II, 1972, THEORY STOCHASTIC PR, V1
[8]  
Hadamard J, 1932, Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques
[9]   ASYMPTOTICALLY NORMAL-FAMILIES OF DISTRIBUTIONS AND EFFICIENT ESTIMATION [J].
IBRAGIMOV, IA ;
KHASMINSKII, RZ .
ANNALS OF STATISTICS, 1991, 19 (04) :1681-1724
[10]  
IBRAGIMOV IA, 1980, THEOR PROBAB APPL+, V25, P703, DOI 10.1137/1125086