Finite element error bounds for a curve shrinking with prescribed normal contact to a fixed boundary

被引:13
作者
Deckelnick, K
Elliott, CM
机构
[1] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
[2] Univ Sussex, Sch Math Sci, Ctr Math Anal & Applicat, Brighton BN1 9QH, E Sussex, England
关键词
D O I
10.1093/imanum/18.4.635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We approximate the evolution of a curve subject to motion by curvature by linear finite elements. The curve evolves inside a given domain Omega and meets partial derivative Omega orthogonally. We derive optimal bounds for the error with respect to the L-2- and H-1-norms and present some computed examples.
引用
收藏
页码:635 / 654
页数:20
相关论文
共 12 条
[1]   A NUMERICAL-METHOD FOR TRACKING CURVE NETWORKS MOVING WITH CURVATURE MOTION [J].
BRONSARD, L ;
WETTON, BTR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (01) :66-87
[2]   ON 3-PHASE BOUNDARY MOTION AND THE SINGULAR LIMIT OF A VECTOR-VALUED GINZBURG-LANDAU EQUATION [J].
BRONSARD, L ;
REITICH, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :355-379
[3]  
Deckelnick K., 1994, PITMAN RES NOTES MAT, P100
[5]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[6]  
Giga Y., 1993, Differential Integral Equations, V6, P1217
[7]   CONVERGENCE OF A CRYSTALLINE ALGORITHM FOR THE MOTION OF A SIMPLE CLOSED CONVEX CURVE BY WEIGHTED CURVATURE [J].
GIRAO, PM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :886-899
[8]  
GRAYSON MA, 1987, J DIFFER GEOM, V26, P285
[9]   GENERALIZED MOTION BY MEAN-CURVATURE WITH NEUMANN CONDITIONS AND THE ALLEN-CAHN MODEL FOR PHASE-TRANSITIONS [J].
KATSOULAKIS, M ;
KOSSIORIS, GT ;
REITICH, F .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :255-279
[10]  
LADYZHENSKAYA OA, 1968, TRANSLATIONS MATH MO, V24