Entropy and extended memory in discrete chaotic dynamics

被引:15
作者
Ebeling, W
Freund, J
Rateitschak, K
机构
[1] Institute of Physics, Humboldt-University Berlin, D-10099 Berlin
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 04期
关键词
D O I
10.1142/S0218127496000308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate simple one-dimensional maps which allow for exact solutions of their related statistical properties. In addition to the originally refined dynamical description a coarse-grained level of description based on certain partitions of the phase space is selected. The deterministic micropscopic dynamics is shifted to a stochastic symbolic dynamics. The higher order entropies are studied for the logistic map, the tent map, and the shark fin map. Markov sources of any prescribed order are constructed explicitly. In a special case, long memory tails are observed. Systems of this type may be of interest for modelling naturally ocurring phenomena.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 38 条
[1]  
[Anonymous], 1962, STOCHASTIC PROCESSES
[2]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[3]  
[Anonymous], 1990, SELBSTORGANISATION Z
[4]  
Arnold V. I., 1968, Ergodic Problems of Classical Mechanics, V9
[5]  
COLLET P, 1980, ITERATED MAPS INTERV
[6]  
Cornfeld I. P., 1982, Ergodic Theory
[7]   MARKOV EVOLUTION AND H-THEOREM UNDER FINITE COARSE GRAINING IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
COURBAGE, M ;
NICOLIS, G .
EUROPHYSICS LETTERS, 1990, 11 (01) :1-6
[8]   Statistical properties of chaos demonstrated in a class of one-dimensional maps [J].
Csordas, Andras ;
Geza Gyoergyi ;
Szepfalusy, Peter ;
Tel, Tamas .
CHAOS, 1993, 3 (01) :31-49
[9]   ENTROPY OF SYMBOLIC SEQUENCES - THE ROLE OF CORRELATIONS [J].
EBELING, W ;
NICOLIS, G .
EUROPHYSICS LETTERS, 1991, 14 (03) :191-196
[10]  
Ebeling W., 1992, Chaos, Solitons and Fractals, V2, P635, DOI 10.1016/0960-0779(92)90058-U