Entropy and extended memory in discrete chaotic dynamics

被引:15
作者
Ebeling, W
Freund, J
Rateitschak, K
机构
[1] Institute of Physics, Humboldt-University Berlin, D-10099 Berlin
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 04期
关键词
D O I
10.1142/S0218127496000308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate simple one-dimensional maps which allow for exact solutions of their related statistical properties. In addition to the originally refined dynamical description a coarse-grained level of description based on certain partitions of the phase space is selected. The deterministic micropscopic dynamics is shifted to a stochastic symbolic dynamics. The higher order entropies are studied for the logistic map, the tent map, and the shark fin map. Markov sources of any prescribed order are constructed explicitly. In a special case, long memory tails are observed. Systems of this type may be of interest for modelling naturally ocurring phenomena.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 38 条
[31]  
MISIUREWICZ M, 1993, CHUAS CIRCUIT PARADI, P651
[32]  
Nicolis G., 1991, Chaos, Solitons and Fractals, V1, P25, DOI 10.1016/0960-0779(91)90053-C
[33]  
NICOLIS G, 1992, PHASE TRANSITIONS CH, P349
[34]   A NEW METHOD TO CALCULATE HIGHER-ORDER ENTROPIES FROM FINITE SAMPLES [J].
SCHMITT, AO ;
HERZEL, H ;
EBELING, W .
EUROPHYSICS LETTERS, 1993, 23 (05) :303-309
[35]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[36]   ENTROPY DECAY AS A MEASURE OF STOCHASTICITY IN CHAOTIC SYSTEMS [J].
SZEPFALUSY, P ;
GYORGYI, G .
PHYSICAL REVIEW A, 1986, 33 (04) :2852-2855
[37]   CHARACTERIZATION OF CHAOS AND COMPLEXITY BY PROPERTIES OF DYNAMICAL ENTROPIES [J].
SZEPFALUSY, P .
PHYSICA SCRIPTA, 1989, T25 :226-229
[38]  
VOLZ H, 1982, INFORMATION, V1