Superconductor-proximity effect in chaotic and integrable billiards

被引:52
作者
Melsen, JA
Brouwer, PW
Frahm, KM
Beenakker, CWJ
机构
来源
PHYSICA SCRIPTA | 1997年 / T69卷
关键词
D O I
10.1088/0031-8949/1997/T69/045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the effects of the proximity to a superconductor on the level density of a billiard for the two extreme cases that the classical motion in the billiard is chaotic or integrable. In zero magnetic field and for a uniform phase in the superconductor, a chaotic billiard has an excitation gap equal to the Thouless energy. In contrast, an integrable (rectangular or circular) billiard has a reduced density of states near the Fermi level, but no gap. We present numerical calculations for both cases in support of our analytical results. For the chaotic case, we calculate how the gap closes as a function of magnetic field or phase difference.
引用
收藏
页码:223 / 225
页数:3
相关论文
共 17 条
[11]  
FRAHM K, 1995, J PHYS I, V5, P847, DOI 10.1051/jp1:1995171
[12]   Effect of the coupling to a superconductor on the level statistics of a metal grain in a magnetic field [J].
Frahm, KM ;
Brouwer, PW ;
Melsen, JA ;
Beenakker, CWJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (16) :2981-2984
[13]  
MAHAUX C, 1969, SHELL MODEL APPROACH
[14]  
Mehta M. L., 1991, Random Matrices
[15]   Induced superconductivity distinguishes chaotic from integrable billiards [J].
Melsen, JA ;
Brouwer, PW ;
Frahm, KM ;
Beenakker, CWJ .
EUROPHYSICS LETTERS, 1996, 35 (01) :7-12
[16]   GAUSSIAN ENSEMBLES OF RANDOM HERMITIAN MATRICES INTERMEDIATE BETWEEN ORTHOGONAL AND UNITARY ONES [J].
PANDEY, A ;
MEHTA, ML .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :449-468