Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes

被引:123
作者
Cho, Yong Jae [1 ]
Kim, Han Sung [1 ]
Im, Hyungsoon [1 ]
Myung, Yoon [1 ]
Jung, Gyeong Bok [1 ]
Lee, Chi Woo [1 ]
Park, Jeunghee [1 ]
Park, Mi-Hee [2 ]
Cho, Jaephil [2 ]
Kang, Hong Seok [3 ]
机构
[1] Korea Univ, Dept Chem, Jochiwon 339700, South Korea
[2] Ulsan Natl Inst Sci & Technol, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
[3] Jeonju Univ, Dept Nano & Adv Mat, Coll Engn, Chonju 560709, Chonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
CARBON NITRIDE NANOTUBES; CORE-SHELL NANOWIRES; HIGH-CAPACITY; ARRAYS; DIAMETER; SINGLE;
D O I
10.1021/jp201485j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen (N)-doped graphitic layers were deposited as shells on pregrown silicon nanowires by chemical vapor deposition. Graphite-like and pyridine-like structures were selectively chosen for 3 and 10% N doping, respectively. Increasing the thickness of the undoped graphitic layers from 20 to 50 nm led to an increase in the charge capacity of the lithium ion battery from 800 to 1040 mA h/g after 45 cycles. Graphite-like 3% N-doping in the 50 nm-thick shell increases the charge capacity by 21% (i.e., to 1260 mA big), while pyridine-like 10% N-doping in the 20 nm-thick shell increases it by 36% (i.e., to 1090 rnA h/g). This suggests that both pyridine- and graphite-like structures can be effective for lithium intercalation. First principles calculations of the graphene sheets show that the large storage capacity of both N-doping structures comes from the formation of dangling bonds around the pyridine-like local motives upon lithium intercalation.
引用
收藏
页码:9451 / 9457
页数:7
相关论文
共 50 条
[31]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]
[32]   Chemically active substitutional nitrogen impurity in carbon nanotubes -: art. no. 105502 [J].
Nevidomskyy, AH ;
Csányi, G ;
Payne, MC .
PHYSICAL REVIEW LETTERS, 2003, 91 (10)
[33]   Silicon Nanotube Battery Anodes [J].
Park, Mi-Hee ;
Kim, Min Gyu ;
Joo, Jaebum ;
Kim, Kitae ;
Kim, Jeyoung ;
Ahn, Soonho ;
Cui, Yi ;
Cho, Jaephil .
NANO LETTERS, 2009, 9 (11) :3844-3847
[34]  
Peng K., 2008, APPL PHYS LETT, V93, P1
[35]  
Peng KQ, 2002, ADV MATER, V14, P1164, DOI 10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO
[36]  
2-E
[37]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[38]   Field emission properties of N-doped capped single-walled carbon nanotubes: A first-principles density-functional study [J].
Qiao, L. ;
Zheng, W. T. ;
Xu, H. ;
Zhang, L. ;
Jiang, Q. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (16)
[39]   Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application [J].
Reddy, Arava Leela Mohana ;
Srivastava, Anchal ;
Gowda, Sanketh R. ;
Gullapalli, Hemtej ;
Dubey, Madan ;
Ajayan, Pulickel M. .
ACS NANO, 2010, 4 (11) :6337-6342
[40]   Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries [J].
Su, Liwei ;
Zhou, Zhen ;
Ren, Manman .
CHEMICAL COMMUNICATIONS, 2010, 46 (15) :2590-2592