Fundamentals of cDNA microarray data analysis

被引:195
作者
Leung, YF [1 ]
Cavalieri, D [1 ]
机构
[1] Harvard Univ, Bauer Ctr Genom Res, Cambridge, MA 02138 USA
关键词
D O I
10.1016/j.tig.2003.09.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Microarray technology is a powerful approach for genomics research. The multi-step, data-intensive nature of this technology has created an unprecedented informatics and analytical challenge. It is important to understand the crucial steps that can affect the outcome of the analysis. In this review, we provide an overview of the contemporary trend on various main analysis steps in the microarray data analysis process, which includes experimental design, data standardization, image acquisition and analysis, normalization, statistical significance inference, exploratory data analysis, class prediction and pathway analysis, as well as various considerations relevant to their implementation.
引用
收藏
页码:649 / 659
页数:11
相关论文
共 58 条
  • [1] Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function
    Akutsu, T
    Miyano, S
    Kuhara, S
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) : 331 - 343
  • [2] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [3] [Anonymous], 2002, Nature, V419, P323
  • [4] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [5] Tissue classification with gene expression profiles
    Ben-Dor, A
    Bruhn, L
    Friedman, N
    Nachman, I
    Schummer, M
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) : 559 - 583
  • [6] Box G.E.P., 1978, STAT EXPERIMENTERS I
  • [7] Minimum information about a microarray experiment (MIAME) - toward standards for microarray data
    Brazma, A
    Hingamp, P
    Quackenbush, J
    Sherlock, G
    Spellman, P
    Stoeckert, C
    Aach, J
    Ansorge, W
    Ball, CA
    Causton, HC
    Gaasterland, T
    Glenisson, P
    Holstege, FCP
    Kim, IF
    Markowitz, V
    Matese, JC
    Parkinson, H
    Robinson, A
    Sarkans, U
    Schulze-Kremer, S
    Stewart, J
    Taylor, R
    Vilo, J
    Vingron, M
    [J]. NATURE GENETICS, 2001, 29 (04) : 365 - 371
  • [8] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [9] Post-analysis follow-up and validation of microarray experiments
    Chuaqui, RF
    Bonner, RF
    Best, CJM
    Gillespie, JW
    Flaig, MJ
    Hewitt, SM
    Phillips, JL
    Krizman, DB
    Tangrea, MA
    Ahram, M
    Linehan, WM
    Knezevic, V
    Emmert-Buck, MR
    [J]. NATURE GENETICS, 2002, 32 (Suppl 4) : 509 - 514
  • [10] Fundamentals of experimental design for cDNA microarrays
    Churchill, GA
    [J]. NATURE GENETICS, 2002, 32 (Suppl 4) : 490 - 495