Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes

被引:72
作者
Huang, Cheng-Wei [1 ,2 ]
Hsieh, Chien-Te [3 ]
Kuo, Ping-Lin [1 ,2 ]
Teng, Hsisheng [1 ,2 ,4 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Tainan 70101, Taiwan
[3] Yuan Ze Univ, Yuan Ze Fuel Cell Ctr, Dept Chem Engn & Mat Sci, Tao Yuan 32023, Taiwan
[4] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
关键词
PHENOL-FORMALDEHYDE RESINS; MESOPOROUS CARBON; POROUS CARBONS; PERFORMANCE; SUPERCAPACITORS; BEHAVIOR; POROSITY; EDLC;
D O I
10.1039/c2jm15645h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel composite of KOH activated mesophase pitch (aMP) and carbon nanotubes (CNTs) shows outstanding performance as an electrode for electric double-layer formation in 2 M H2SO4. The aMP powder is highly porous and the KOH activation may produce pores that are populated with graphitic edges. The resulting aMP electrode has a capacitance value of 295 F g(-1) at 0.125 A g(-1) discharge and decreases to 180 F g(-1) at 100 A g(-1). With particle milling, the pore diffusion resistance of the aMP electrode decreases significantly because of the elimination of a hindered diffusion mode from the particle interior. CNT addition provides inter-particle spacing and bridging media for the milled aMP and reduces the Warburg diffusion and electrical resistance. The composite of milled aMP and CNTs has capacitance values of 305 F g(-1) at 0.125 A g(-1) and 214 F g(-1) at 100 A g(-1). With a small potential window of 1 V, the resulting symmetric cells can deliver an energy level of 8.2 Wh kg(-1) at a high power of 10 000 W kg(-1). These cells show superior stability, with no decay of specific capacitance after 10 000 cycles of galvanostatic charge and discharge.
引用
收藏
页码:7314 / 7322
页数:9
相关论文
共 56 条
[31]   Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application [J].
Qian, Xufang ;
Lv, Yingying ;
Li, Wei ;
Xia, Yongyao ;
Zhao, Dongyuan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13025-13031
[32]   Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J].
Raymundo-Pinero, E. ;
Kierzek, K. ;
Machnikowski, J. ;
Beguin, F. .
CARBON, 2006, 44 (12) :2498-2507
[33]   Porous structure of PAN-based activated carbon fibers [J].
Ryu, ZY ;
Zheng, JT ;
Wang, MZ .
CARBON, 1998, 36 (04) :427-432
[34]   A NEW ANALYSIS METHOD FOR THE DETERMINATION OF THE PORE-SIZE DISTRIBUTION OF POROUS CARBONS FROM NITROGEN ADSORPTION MEASUREMENTS [J].
SEATON, NA ;
WALTON, JPRB ;
QUIRKE, N .
CARBON, 1989, 27 (06) :853-861
[35]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[36]   Huge electrochemical capacitance of exfoliated carbon fibers [J].
Soneda, Y ;
Toyoda, M ;
Hashiya, K ;
Yamashita, J ;
Kodama, M ;
Hatori, H ;
Inagaki, M .
CARBON, 2003, 41 (13) :2680-2682
[37]   Graphene-Based Ultracapacitors [J].
Stoller, Meryl D. ;
Park, Sungjin ;
Zhu, Yanwu ;
An, Jinho ;
Ruoff, Rodney S. .
NANO LETTERS, 2008, 8 (10) :3498-3502
[38]   Best practice methods for determining an electrode material's performance for ultracapacitors [J].
Stoller, Meryl D. ;
Ruoff, Rodney S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1294-1301
[39]   Activated carbon-carbon nanotube composite porous film for supercapacitor applications [J].
Taberna, PL ;
Chevallier, G ;
Simon, P ;
Plée, D ;
Aubert, T .
MATERIALS RESEARCH BULLETIN, 2006, 41 (03) :478-484
[40]   Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J].
Taberna, PL ;
Simon, P ;
Fauvarque, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :A292-A300