Protein phosphatase 2C (PP2C) function in higher plants

被引:165
作者
Rodriguez, PL [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas, Valencia, Spain
关键词
D O I
10.1023/A:1006054607850
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.
引用
收藏
页码:919 / 927
页数:9
相关论文
共 69 条
[1]   CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation [J].
Becraft, PW ;
Stinard, PS ;
McCarty, DR .
SCIENCE, 1996, 273 (5280) :1406-1409
[2]   Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana [J].
Bertauche, N ;
Leung, J ;
Giraudat, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (01) :193-200
[3]   The mechanism of ethylene perception [J].
Bleecker, AB ;
Schaller, GE .
PLANT PHYSIOLOGY, 1996, 111 (03) :653-660
[4]  
Bogre L, 1997, PLANT CELL, V9, P75, DOI 10.1105/tpc.9.1.75
[5]   The protein phosphatase 2C (PP2C) superfamily: Detection of bacterial homologues [J].
Bork, P ;
Brown, NP ;
Hegyi, H ;
Schultz, J .
PROTEIN SCIENCE, 1996, 5 (07) :1421-1425
[6]   Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: Implications for transmembrane signaling in plants [J].
Braun, DM ;
Stone, JM ;
Walker, JC .
PLANT JOURNAL, 1997, 12 (01) :83-95
[7]  
BRUXELLES GL, 1996, PLANT PHYSIOL, V111, P381, DOI DOI 10.1104/PP.111.2.381
[8]   GENE-EXPRESSION REGULATED BY ABSCISIC-ACID AND ITS RELATION TO STRESS TOLERANCE [J].
CHANDLER, PM ;
ROBERTSON, M .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :113-141
[9]   THE TMK1-GENE FROM ARABIDOPSIS CODES FOR A PROTEIN WITH STRUCTURAL AND BIOCHEMICAL CHARACTERISTICS OF A RECEPTOR PROTEIN-KINASE [J].
CHANG, C ;
SCHALLER, GE ;
PATTERSON, SE ;
KWOK, SF ;
MEYEROWITZ, EM ;
BLEECKER, AB .
PLANT CELL, 1992, 4 (10) :1263-1271
[10]   A NOVEL HUMAN PROTEIN SERINE/THREONINE PHOSPHATASE, WHICH POSSESSES 4 TETRATRICOPEPTIDE REPEAT MOTIFS AND LOCALIZES TO THE NUCLEUS [J].
CHEN, MX ;
MCPARTLIN, AE ;
BROWN, L ;
CHEN, YH ;
BARKER, HM ;
COHEN, PTW .
EMBO JOURNAL, 1994, 13 (18) :4278-4290