Splicing regulation: From a parts list of regulatory elements to an integrated splicing code

被引:720
作者
Wang, Zefeng [1 ]
Burge, Christopher B. [2 ]
机构
[1] Univ N Carolina, Sch Med, Dept Pharmacol, Chapel Hill, NC 27599 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
context dependence; pre-mRNA splicing; splicing code; splicing factor; splicing regulation;
D O I
10.1261/rna.876308
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code'' for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
引用
收藏
页码:802 / 813
页数:12
相关论文
共 147 条
[11]   Global analysis of alternative splicing differences between humans and chimpanzees [J].
Calarco, John A. ;
Xing, Yi ;
Caceres, Mario ;
Calarco, Joseph P. ;
Xiao, Xinshu ;
Pan, Qun ;
Lee, Christopher ;
Preuss, Todd M. ;
Blencowe, Benjamin J. .
GENES & DEVELOPMENT, 2007, 21 (22) :2963-2975
[12]   Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family [J].
Caputi, M ;
Zahler, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43850-43859
[13]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298
[14]   ESEfinder: a web resource to identify exonic splicing enhancers [J].
Cartegni, L ;
Wang, JH ;
Zhu, ZW ;
Zhang, MQ ;
Krainer, AR .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3568-3571
[15]  
CASCINO I, 1995, J IMMUNOL, V154, P2706
[16]   Searching for splicing motifs [J].
Chasin, Lawrence A. .
ALTERNATIVE SPLICING IN THE POSTGENOMIC ERA, 2007, 623 :85-106
[17]   Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat β-tropomyosin gene [J].
Chen, CD ;
Kobayashi, R ;
Helfman, DM .
GENES & DEVELOPMENT, 1999, 13 (05) :593-606
[18]   Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing [J].
Chou, MY ;
Underwood, JG ;
Nikolic, J ;
Luu, MHT ;
Black, DL .
MOLECULAR CELL, 2000, 5 (06) :949-957
[19]  
Chou MY, 1999, MOL CELL BIOL, V19, P69
[20]   Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays [J].
Clark, TA ;
Sugnet, CW ;
Ares, M .
SCIENCE, 2002, 296 (5569) :907-910