Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: Cysteine and disulfide scanning studies

被引:28
作者
Winston, SE [1 ]
Mehan, R [1 ]
Falke, JJ [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1021/bi0507884
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aspartate receptor is one of the ligand-specific, homodimeric chemoreceptors that detects extracellular attractants and triggers the chemotaxis pathway of Escherichia coli and Salmonella typhimurium. This receptor regulates the activity of the histidine kinase CheA, which forms a kinetically stable complex with the receptor cytoplasmic domain. An atomic four-helix bundle model has been constructed for this domain, which is functionally subdivided into the signaling and adaptation subdomains. The proposed four-helix bundle structure of the signaling subdomain, which binds CheA, is fully supported by experimental evidence. Much less evidence is available to test the four-helix bundle model of the adaptation subdomain, which possesses covalent adaptation sites and docking surfaces for adaptation enzymes. The present study focuses on a putative helix near the C terminus of the adaptation subdomain. To probe the structural and functional features of positions G467-A494 in this C-terminal region, a cysteine and disulfide scanning approach has been employed. Measurement of the chemical reactivities of scanned cysteines reveals an cc-helical periodicity of exposed and buried residues, confirming cc-helical secondary structure and mapping out a buried packing face. The effects of cysteine substitutions on activity in vivo and in vitro highlight the functional importance of the helix, especially its buried face. A scan for disulfide bond formation between symmetric pairs of engineered cysteines reveals promiscuous collisions between subunits, indicating the presence of significant thermal dynamics. A scan for functional disulfides reveals lock-on and signal-retaining disulfide bonds formed between symmetric pairs of cysteines at buried positions, indicating that the buried face of the helix lies near the subunit interface of the homodimer in the equilibrium structures of both the apo and aspartate-bound states where it plays a critical role in kinase regulation. These results strongly support the existing four-helix bundle model of the adaptation subdomain structure. A mechanistic model is proposed in which a signal is transmitted through the adaptation subdomain by a change in supercoiling of the four-helix bundle.
引用
收藏
页码:12655 / 12666
页数:12
相关论文
共 73 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
SCIENCE, 1966, 153 (3737) :708-&
[2]   Collaborative signaling by mixed chemoreceptor teams in Escherichia coli [J].
Ames, P ;
Studdert, CA ;
Reiser, RH ;
Parkinson, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :7060-7065
[3]   CONSTITUTIVELY SIGNALING FRAGMENTS OF TSR, THE ESCHERICHIA-COLI SERINE CHEMORECEPTOR [J].
AMES, P ;
PARKINSON, JS .
JOURNAL OF BACTERIOLOGY, 1994, 176 (20) :6340-6348
[4]   Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: Cysteine and disulfide scanning studies [J].
Bass, RB ;
Coleman, MD ;
Falke, JJ .
BIOCHEMISTRY, 1999, 38 (29) :9317-9327
[5]   Detection of a conserved α-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning [J].
Bass, RB ;
Falke, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :25006-25014
[6]   The aspartate receptor cytoplasmic domain:: in situ chemical analysis of structure, mechanism and dynamics [J].
Bass, RB ;
Falke, JJ .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (07) :829-840
[7]   TRANSMEMBRANE SIGNALING BY A HYBRID PROTEIN - COMMUNICATION FROM THE DOMAIN OF CHEMORECEPTOR TRG THAT RECOGNIZES SUGAR-BINDING PROTEINS TO THE KINASE/PHOSPHATASE DOMAIN OF OSMOSENSOR ENVZ [J].
BAUMGARTNER, JW ;
KIM, C ;
BRISSETTE, RE ;
INOUYE, M ;
PARK, C ;
HAZELBAUER, GL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (04) :1157-1163
[8]   An aspartate insulin receptor chimera mitogenically activates fibroblasts [J].
Biemann, HP ;
Harmer, SL ;
Koshland, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (44) :27927-27930
[9]   HOW BACTERIA SENSE AND SWIM [J].
BLAIR, DF .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :489-522
[10]   TRANSMEMBRANE SIGNAL TRANSDUCTION IN BACTERIAL CHEMOTAXIS INVOLVES LIGAND-DEPENDENT ACTIVATION OF PHOSPHATE GROUP TRANSFER [J].
BORKOVICH, KA ;
KAPLAN, N ;
HESS, JF ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (04) :1208-1212