Negative cooperativity of uric acid binding to the transcriptional regulator HucR from Deinococcus radiodurans

被引:44
作者
Wilkinson, SP [1 ]
Grove, A [1 ]
机构
[1] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
winged helix-turn-helix; MarR; ligand; oxidative stress; intrinsic fluorescence;
D O I
10.1016/j.jmb.2005.05.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the MarR family of winged helix transcriptional regulators have been shown to regulate multidrug and oxidative stress response, pathogenesis, and catabolism of aromatic compounds. Many respond to anionic lipophilic compounds in their capacity to bind DNA, and the cocrystal structure of MarR bound to salicylate revealed two ligand-binding pockets, SAL-A and SAL-B. The MarR homolog, HucR, from Deinococcus radiodurans has been shown to repress expression of a predicted uricase, and DNA-binding by HucR is antagonized by uric acid, the substrate of uricase. We provide a biochemical investigation of DNA-binding and uric acid-binding by HucR. Equilibrium analytical ultracentrifugation indicates that HucR exists as a dimer. Intrinsic fluorescence spectra suggest that the association of the HucR dimer with its cognate DNA involves conformational flexibility in the globular interior and/or dimerization domain of the protein, and near-UV circular dichroism spectra indicate a concomitant change in the helical twist of the DNA duplex. DNA-binding affinity, measured by electrophoretic mobility-shift assays, for HucR mutants bearing single amino acid substitutions suggests the importance of the beta-hairpin "wing" in DNA binding. Analysis of intrinsic fluorescence spectra demonstrates that uric acid induces conformational changes in HucR and binds with an apparent K-d = 11.6(+/- 3.7) mu M and a Hill coefficient of 0.7 +/- 0.1, indicating negative cooperativity, Fluorescence and DNAbinding properties of the HucR variants indicate that SAL-A is a low-affinity, uric acid-binding site and that negative cooperativity exists between homologous, high-affinity sites. The conservation of residues comprising site SAL-A suggests that it is a low-affinity, ligand-binding site in MarR homologs. Mechanistic considerations suggest that HucR is regulated by uric acid to maintain optimal cellular levels of this scavenger of free radicals in response to oxidative stress and DNA damage. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:617 / 630
页数:14
相关论文
共 42 条
[1]   The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution [J].
Alekshun, MN ;
Levy, SB ;
Mealy, TR ;
Seaton, BA ;
Head, JF .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (08) :710-714
[2]   Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro [J].
Alekshun, MN ;
Levy, SB .
JOURNAL OF BACTERIOLOGY, 1999, 181 (15) :4669-4672
[3]   Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding [J].
Alekshun, MN ;
Kim, YS ;
Levy, SB .
MOLECULAR MICROBIOLOGY, 2000, 35 (06) :1394-1404
[4]  
[Anonymous], NATURE
[5]   ALLOSTERIC UNDERWINDING OF DNA IS A CRITICAL STEP IN POSITIVE CONTROL OF TRANSCRIPTION BY HG-MERR [J].
ANSARI, AZ ;
CHAEL, ML ;
OHALLORAN, TV .
NATURE, 1992, 355 (6355) :87-89
[6]   REPRESSOR MUTATIONS IN THE MARRAB OPERON THAT ACTIVATE OXIDATIVE STRESS GENES AND MULTIPLE ANTIBIOTIC-RESISTANCE IN ESCHERICHIA-COLI [J].
ARIZA, RR ;
COHEN, SP ;
BACHHAWAT, N ;
LEVY, SB ;
DEMPLE, B .
JOURNAL OF BACTERIOLOGY, 1994, 176 (01) :143-148
[7]   Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli [J].
Asako, H ;
Nakajima, H ;
Kobayashi, K ;
Kobayashi, M ;
Aono, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (04) :1428-1433
[8]   CIRCULAR-DICHROISM AND DNA SECONDARY STRUCTURE [J].
BAASE, WA ;
JOHNSON, WC .
NUCLEIC ACIDS RESEARCH, 1979, 6 (02) :797-814
[9]   Exploiting the past and the future in protein secondary structure prediction [J].
Baldi, P ;
Brunak, S ;
Frasconi, P ;
Soda, G ;
Pollastri, G .
BIOINFORMATICS, 1999, 15 (11) :937-946
[10]   Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA [J].
Baumgarth, B ;
Bartels, FW ;
Anselmetti, D ;
Becker, A ;
Ros, R .
MICROBIOLOGY-SGM, 2005, 151 :259-268