The influence of in vitro fitness defects on pneumococcal ability to colonize and to cause invasive disease

被引:19
作者
Fernebro, Jenny [1 ,2 ]
Blomberg, Christel [1 ,2 ]
Morfeldt, Eva [1 ]
Wolf-Watz, Hans [3 ]
Normark, Staffan [1 ,2 ]
Normark, Birgitta Henriques [1 ,2 ]
机构
[1] Swedish Inst Infect Dis Control, S-17182 Solna, Sweden
[2] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, S-17177 Stockholm, Sweden
[3] Umea Univ, Dept Mol Biol, S-90187 Umea, Sweden
关键词
D O I
10.1186/1471-2180-8-65
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Streptococcus pneumoniae is a genetically diverse major human pathogen, yet a common colonizer of the nasopharynx. Here we analyzed the influence of defects affecting in vitro growth rate, on the ability of S. pneumoniae to colonize and to cause invasive disease in vivo. Results: Of eleven different clinical isolates one serotype 14 carrier isolate showed a significantly longer generation time as compared to other isolates, and was severely attenuated in mice. To directly investigate the impact of growth rate on virulence, a panel of mutants in five non-essential housekeeping genes was constructed in the virulent TIGR4 background by insertion-deletion mutagenesis. Three of these mutants (ychF, hemK and yebC) were, to different degrees, growth defective, and showed a reduced invasiveness in an intranasal murine challenge model that correlated to their in vitro growth rate, but remained capable of colonizing the upper airways. The growth defect, as well as virulence defect of the hemK insertion-deletion mutant, was mediated by polarity effects on the downstream yrdC gene, encoding a probable chaperone in ribosome assembly. Conclusion: We conclude that large fitness defects are needed to completely prevent pneumococci from causing invasive disease after intranasal challenge. However, even severe growth defects still allow pneumococci to persistently colonize the upper airways.
引用
收藏
页数:12
相关论文
共 44 条
[1]   HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori [J].
Ando, T ;
Israel, DA ;
Kusugami, K ;
Blaser, MJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (18) :5572-5580
[2]   A pneumococcal pilus influences virulence and host inflammatory responses [J].
Barocchi, MA ;
Rie, J ;
Zogaj, X ;
Hemsley, C ;
Albiger, B ;
Kanth, A ;
Dahlberg, S ;
Fernebro, J ;
Moschioni, M ;
Masignani, V ;
Hultenby, K ;
Taddei, AR ;
Beiter, K ;
Wartha, F ;
von Euler, A ;
Covacci, A ;
Holden, DW ;
Normark, S ;
Rappuoli, R ;
Henriques-Normark, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2857-2862
[3]   REDUCED VIRULENCE OF A DEFINED PNEUMOLYSIN-NEGATIVE MUTANT OF STREPTOCOCCUS-PNEUMONIAE [J].
BERRY, AM ;
YOTHER, J ;
BRILES, DE ;
HANSMAN, D ;
PATON, JC .
INFECTION AND IMMUNITY, 1989, 57 (07) :2037-2042
[4]   Virulence of antibiotic-resistant Salmonella typhimurium [J].
Björkman, J ;
Hughes, D ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3949-3953
[5]   Mosaic genes and mosaic chromosomes-genomic variation in Streptococcus pneumoniae [J].
Brückner, R ;
Nuhn, M ;
Reichmann, P ;
Weber, B ;
Hakenbeck, R .
INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2004, 294 (2-3) :157-168
[6]   Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential [J].
Brueggemann, AB ;
Griffiths, DT ;
Meats, E ;
Peto, T ;
Crook, DW ;
Spratt, BG .
JOURNAL OF INFECTIOUS DISEASES, 2003, 187 (09) :1424-1432
[7]   Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases [J].
Burnaugh, Amanda M. ;
Frantz, Laura J. ;
King, Samantha J. .
JOURNAL OF BACTERIOLOGY, 2008, 190 (01) :221-230
[8]   Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function [J].
Caldon, CE ;
Yoong, P ;
March, PE .
MOLECULAR MICROBIOLOGY, 2001, 41 (02) :289-297
[9]   A competence regulon in Streptococcus pneumoniae revealed by genomic analysis [J].
Campbell, EA ;
Choi, SY ;
Masure, HR .
MOLECULAR MICROBIOLOGY, 1998, 27 (05) :929-939
[10]   The global burden of group A streptococcal diseases [J].
Carapetis, JR ;
Steer, AC ;
Mulholland, EK ;
Weber, M .
LANCET INFECTIOUS DISEASES, 2005, 5 (11) :685-694