Hybrid Silicon Nanocone-Polymer Solar Cells

被引:386
作者
Jeong, Sangmoo [2 ]
Garnett, Erik C. [1 ]
Wang, Shuang [2 ]
Yu, Zongu [2 ]
Fan, Shanhui [2 ]
Brongersma, Mark L. [1 ]
McGehee, Michael D. [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
关键词
Nanotexture; solar cell; heterojunction; conductive polymer; light trapping; NANOWIRE; ABSORPTION; ARRAYS;
D O I
10.1021/nl300713x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 mu m thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm(2), which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution.
引用
收藏
页码:2971 / 2976
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 1 W PHOT SYST
[2]   Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells [J].
Avasthi, Sushobhan ;
Lee, Stephanie ;
Loo, Yueh-Lin ;
Sturm, James C. .
ADVANCED MATERIALS, 2011, 23 (48) :5762-+
[3]   PREPARATION OF MONODISPERSE SILICA PARTICLES - CONTROL OF SIZE AND MASS FRACTION [J].
BOGUSH, GH ;
TRACY, MA ;
ZUKOSKI, CF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) :95-106
[4]  
Garnett E.C., 2010, 35 IEEE PVSC
[5]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[6]   Nanowire Solar Cells [J].
Garnett, Erik C. ;
Brongersma, Mark L. ;
Cui, Yi ;
McGehee, Michael D. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41, 2011, 41 :269-295
[7]   Solar cell efficiency tables (version 37) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (01) :84-92
[8]   Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer self-assembly on n-Si [J].
Har-Lavan, Rotem ;
Ron, Izhar ;
Thieblemont, Florent ;
Cahen, David .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[9]   Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells [J].
He, Lining ;
Jiang, Changyun ;
Rusli ;
Lai, Donny ;
Wang, Hao .
APPLIED PHYSICS LETTERS, 2011, 99 (02)
[10]   Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching [J].
Hsu, Ching-Mei ;
Connor, Stephen T. ;
Tang, Mary X. ;
Cui, Yi .
APPLIED PHYSICS LETTERS, 2008, 93 (13)