Hydrodynamic properties of fractals: Application of the lattice boltzmann equation to transverse flow past an array of fractal objects

被引:13
作者
Adrover, A [1 ]
Giona, M [1 ]
机构
[1] UNIV CAGLIARI,DIPARTIMENTO INGN CHIM,I-09123 CAGLIARI,ITALY
关键词
creeping flow; fractal objects; lattice Boltzmann equation; hydrodynamic resistance;
D O I
10.1016/S0301-9322(96)00044-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The numerical solution for slow flow past a square array of fractal objects, such as a diffusion limited aggregate (DLA), is addressed by means of the lattice Boltzmann equation (LEE), including a body force term. While the calculated values of the seepage velocity are shown to be independent of the fractal. dimension of the objects, the drag force exerted by the fluid is closely linked to fractal dimension. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 29 条
[21]  
ROTHMAN H, 1988, GEOPHYSICS, V33, P509
[22]   SLOW FLOW THROUGH A PERIODIC ARRAY OF SPHERES [J].
SANGANI, AS ;
ACRIVOS, A .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1982, 8 (04) :343-360
[23]   SLOW FLOW PAST PERIODIC ARRAYS OF CYLINDERS WITH APPLICATION TO HEAT-TRANSFER [J].
SANGANI, AS ;
ACRIVOS, A .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1982, 8 (03) :193-206
[24]   LONGITUDINAL LAMINAR FLOW BETWEEN CYLINDERS ARRANGED IN REGULAR ARRAY [J].
SPARROW, EM ;
LOEFFLER, AL .
AICHE JOURNAL, 1959, 5 (03) :325-330
[25]   THE LATTICE BOLTZMANN-EQUATION - A NEW TOOL FOR COMPUTATIONAL FLUID-DYNAMICS [J].
SUCCI, S ;
BENZI, R ;
HIGUERA, F .
PHYSICA D, 1991, 47 (1-2) :219-230
[26]   3-DIMENSIONAL FLOWS IN COMPLEX GEOMETRIES WITH THE LATTICE BOLTZMANN METHOD [J].
SUCCI, S ;
FOTI, E ;
HIGUERA, F .
EUROPHYSICS LETTERS, 1989, 10 (05) :433-438
[27]  
VANDERHOEF MA, 1991, PHYSICA D, V347, P191
[28]  
Vicsek T., 1989, FRACTAL GROWTH PHENO
[29]   CELLULAR AUTOMATON FLUIDS .1. BASIC THEORY [J].
WOLFRAM, S .
JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (3-4) :471-526