Selective poisoning and deactivation of acid sites on sulfated zirconia catalysts for n-butane isomerization

被引:120
作者
Yaluris, G [1 ]
Larson, RB [1 ]
Kobe, JM [1 ]
Gonzalez, MR [1 ]
Fogash, KB [1 ]
Dumesic, JA [1 ]
机构
[1] UNIV WISCONSIN,DEPT CHEM ENGN,MADISON,WI 53706
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcat.1996.0032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reaction kinetics measurements, selective poisoning, and microcalorimetry were used to study the activity, selectivity, and deactivation of acid sites on a sulfated zirconia catalyst for n-butane isomerization at 423 K. The sulfated zirconia catalyst has a distribution of acid site strengths, containing 50 mu mol/g of strong acid sites characterized by heats of ammonia adsorption from 125 to 165 kJ/mol. The strongest acid sites (heats from 145 to 165 kJ/mol) are responsible for the high initial activity of the catalyst, but these sites deactivate rapidly under reaction conditions. The acid sites exhibiting heats from 125 to 145 kJ/mol are less active than the stronger sites, but deactivate more slowly. Weaker sites have low activity and deactivate more rapidly after the intermediate sites are deactivated or poisoned. Bronsted acidity is necessary for extended catalytic activity, although Lewis acid sites may play a role in generating the initial high activity. Acid sites with heats of ammonia adsorption from 125 to 165 kJ/mol show good selectivity for production of isobutane (ca. 93%), while sites with heats from 120 to 125 kJ/mol show lower isobutane selectivity (ca. 80%). (C) 1996 Academic Press, Inc.
引用
收藏
页码:336 / 342
页数:7
相关论文
共 50 条
[1]   ISOMERIZATION OF C-13 LABELED BUTANE OVER FE,MN PROMOTED SULFATED ZRO2 CATALYST [J].
ADEEVA, V ;
LEI, GD ;
SACHTLER, WMH .
APPLIED CATALYSIS A-GENERAL, 1994, 118 (01) :L11-L15
[2]   ACIDITY AND CATALYTIC ACTIVITY OF ZIRCONIUM AND TITANIUM SULFATES HEAT-TREATED AT HIGH-TEMPERATURE - SOLID SUPERACID CATALYSTS [J].
ARATA, K ;
HINO, M ;
YAMAGATA, N .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1990, 63 (01) :244-246
[3]  
Arata K., 1990, ADV CATAL, V37, P165
[4]   ACIDIC PROPERTIES OF SULFATED ZIRCONIA - AN INFRARED SPECTROSCOPIC STUDY [J].
BABOU, F ;
COUDURIER, G ;
VEDRINE, JC .
JOURNAL OF CATALYSIS, 1995, 152 (02) :341-349
[5]  
BABOU F, 1993, J PHYS CHEM-US, V97, P1150
[6]   SUPERACID AND CATALYTIC PROPERTIES OF SULFATED ZIRCONIA [J].
CHEN, FR ;
COUDURIER, G ;
JOLY, JF ;
VEDRINE, JC .
JOURNAL OF CATALYSIS, 1993, 143 (02) :616-626
[7]   LOW-TEMPERATURE SUPERACID CATALYSIS - REACTIONS OF N-BUTANE CATALYZED BY IRON-PROMOTED AND MANGANESE-PROMOTED SULFATED ZIRCONIA [J].
CHEUNG, TK ;
DITRI, JL ;
GATES, BC .
JOURNAL OF CATALYSIS, 1995, 151 (02) :464-466
[8]   NATURE OF HYDROUS ZIRCONIA AND SULFATED HYDROUS ZIRCONIA [J].
CLEARFIELD, A ;
SERRETTE, GPD ;
KHAZISYED, AH .
CATALYSIS TODAY, 1994, 20 (02) :295-312
[9]   INFLUENCE OF ZRO2 CRYSTALLINE-STRUCTURE AND SULFATE ION CONCENTRATION ON THE CATALYTIC ACTIVITY OF SO42- ZRO2 [J].
COMELLI, RA ;
VERA, CR ;
PARERA, JM .
JOURNAL OF CATALYSIS, 1995, 151 (01) :96-101
[10]   INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURE AND CATALYTIC PROPERTIES OF SO42-/ZRO2 SUPERACID CATALYSTS [J].
CORMA, A ;
FORNES, V ;
JUANRAJADELL, MI ;
NIETO, JML .
APPLIED CATALYSIS A-GENERAL, 1994, 116 (1-2) :151-163