Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation

被引:184
作者
Sale, JE
Calandrini, DM
Takata, M
Takeda, S
Neuberger, MS
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Kawasaki Med Sch, Okayama 7010192, Japan
[3] Kyoto Univ, Fac Med, CREST Res Project, Sakyo Ku, Kyoto 6068501, Japan
关键词
D O I
10.1038/35091100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion(1). Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues(2) XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line(3) exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.
引用
收藏
页码:921 / 926
页数:7
相关论文
共 30 条
  • [1] CELL-LINES DERIVED FROM AVIAN LYMPHOMAS EXHIBIT 2 DISTINCT PHENOTYPES
    BABA, TW
    GIROIR, BP
    HUMPHRIES, EH
    [J]. VIROLOGY, 1985, 144 (01) : 139 - 151
  • [2] Reduced X-ray resistance and homologous recombination frequencies in a RAD54(-/-) mutant of the chicken DT40 cell line
    Bezzubova, O
    Silbergleit, A
    YamaguchiIwai, Y
    Takeda, S
    Buerstedde, JM
    [J]. CELL, 1997, 89 (02) : 185 - 193
  • [3] A new DNA sequence assembly program
    Bonfield, JK
    Smith, KF
    Staden, R
    [J]. NUCLEIC ACIDS RESEARCH, 1995, 23 (24) : 4992 - 4999
  • [4] XRCC3 is required for efficient repair of chromosome breaks by homologous recombination
    Brenneman, MA
    Weiss, AE
    Nickoloff, JA
    Chen, DJ
    [J]. MUTATION RESEARCH-DNA REPAIR, 2000, 459 (02): : 89 - 97
  • [5] DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation
    Bross, L
    Fukita, Y
    McBlane, F
    Démollière, C
    Rajewsky, K
    Jacobs, H
    [J]. IMMUNITY, 2000, 13 (05) : 589 - 597
  • [6] LIGHT CHAIN GENE CONVERSION CONTINUES AT HIGH-RATE IN AN ALV-INDUCED CELL-LINE
    BUERSTEDDE, JM
    REYNAUD, CA
    HUMPHRIES, EH
    OLSON, W
    EWERT, DL
    WEILL, JC
    [J]. EMBO JOURNAL, 1990, 9 (03) : 921 - 927
  • [7] The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells
    Cui, X
    Brenneman, M
    Meyne, J
    Oshimura, M
    Goodwin, EH
    Chen, DJ
    [J]. MUTATION RESEARCH-DNA REPAIR, 1999, 434 (02): : 75 - 88
  • [8] Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice
    Deans, B
    Griffin, CS
    Maconochie, M
    Thacker, J
    [J]. EMBO JOURNAL, 2000, 19 (24) : 6675 - 6685
  • [9] Evolution and the molecular basis of somatic hypermutation of antigen receptor genes
    Diaz, M
    Flajnik, MF
    Klinman, N
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 356 (1405) : 67 - 72
  • [10] Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation
    Griffin, CS
    Simpson, PJ
    Wilson, CR
    Thacker, J
    [J]. NATURE CELL BIOLOGY, 2000, 2 (10) : 757 - 761