New aspects of the Warburg effect in cancer cell biology

被引:254
作者
Bensinger, Steven J. [1 ,2 ,3 ]
Christofk, Heather R. [2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Inst Mol Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Broad Stem Cell Res Ctr, Los Angeles, CA 90095 USA
关键词
Aerobic glycolysis; Cancer; Metabolism; Warburg effect; Mitochondria; PYRUVATE-KINASE M2; TUMOR METABOLISM; MITOCHONDRIAL-DNA; TYROSINE PHOSPHORYLATION; ALLOSTERIC REGULATION; AEROBIC GLYCOLYSIS; SIGNALING PATHWAY; ENERGY-METABOLISM; GENE-EXPRESSION; IDH2; MUTATIONS;
D O I
10.1016/j.semcdb.2012.02.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Altered cellular metabolism is a defining feature of cancer [1]. The best studied metabolic phenotype of cancer is aerobic glycloysis - also known as the Warburg effect - characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients and growing evidence that mutations in oncogenes and tumor suppressor genes directly impact metabolism. The goals of this review are to provide an organized snapshot of the current understanding of regulatory mechanisms important for Warburg effect and its role in tumor biology. Since several reviews have covered aspects of this topic in recent years, we focus on newest contributions to the field and reference other reviews where appropriate. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:352 / 361
页数:10
相关论文
共 116 条
[1]   Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses [J].
Anastasiou, Dimitrios ;
Poulogiannis, George ;
Asara, John M. ;
Boxer, Matthew B. ;
Jiang, Jian-kang ;
Shen, Min ;
Bellinger, Gary ;
Sasaki, Atsuo T. ;
Locasale, Jason W. ;
Auld, Douglas S. ;
Thomas, Craig J. ;
Vander Heiden, Matthew G. ;
Cantley, Lewis C. .
SCIENCE, 2011, 334 (6060) :1278-1283
[2]  
[Anonymous], COMMUNICATION
[3]   Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells [J].
Arnuthan, G ;
Biswas, G ;
Ananadatheerthavarada, HK ;
Vijayasarathy, C ;
Shephard, HM ;
Avadhani, NG .
ONCOGENE, 2002, 21 (51) :7839-7849
[4]  
Atsumi T, 2002, CANCER RES, V62, P5881
[5]   Uncoupling protein-2 and cancer [J].
Baffy, Gyorgy .
MITOCHONDRION, 2010, 10 (03) :243-252
[6]   Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J].
Bao, Shideng ;
Wu, Qiulian ;
McLendon, Roger E. ;
Hao, Yueling ;
Shi, Qing ;
Hjelmeland, Anita B. ;
Dewhirst, Mark W. ;
Bigner, Darell D. ;
Rich, Jeremy N. .
NATURE, 2006, 444 (7120) :756-760
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[9]   HYPOXIA AND METABOLISM SERIES - TIMELINE The impact of O2 availability on human cancer [J].
Bertout, Jessica A. ;
Patel, Shetal A. ;
Simon, M. Celeste .
NATURE REVIEWS CANCER, 2008, 8 (12) :967-975
[10]   Mechanism of mitochondrial stress-induced resistance to apoptosis in mitochondrial DNA-depleted C2C12 myocytes [J].
Biswas, G ;
Anandatheerthavarada, HK ;
Avadhani, NG .
CELL DEATH AND DIFFERENTIATION, 2005, 12 (03) :266-278