Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

被引:221
作者
Alonso-Gonzalez, P. [1 ]
Albella, P. [1 ,2 ,3 ]
Schnell, M. [1 ]
Chen, J. [1 ,2 ,3 ]
Huth, F. [1 ,4 ]
Garcia-Etxarri, A. [2 ,3 ,5 ,6 ]
Casanova, F. [1 ,6 ]
Golmar, F. [1 ,7 ]
Arzubiaga, L. [1 ]
Hueso, L. E. [1 ,6 ]
Aizpurua, J. [2 ,3 ]
Hillenbrand, R. [1 ,6 ]
机构
[1] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[2] Ctr Fis Mat CSIC UPV EHU, San Sebastian 20018, Spain
[3] DIPC, San Sebastian 20018, Spain
[4] Neaspec GmbH, D-82152 Munich, Germany
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[7] INTI CONICET, San Martin, Bs As, Argentina
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
欧洲研究理事会;
关键词
RAMAN-SCATTERING; NEAR-FIELD; SPECTROSCOPY; MOLECULES; NANOPARTICLE; RESONANCES; SPECTRA;
D O I
10.1038/ncomms1674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]  
[Anonymous], 2002, Handbook of vibrational spectroscopy
[3]   Near-field polarization shaping by a near-resonant plasmonic cross antenna [J].
Biagioni, Paolo ;
Savoini, Matteo ;
Huang, Jer-Shing ;
Duo, Lamberto ;
Finazzi, Marco ;
Hecht, Bert .
PHYSICAL REVIEW B, 2009, 80 (15)
[4]   Mapping the plasmon resonances of metallic nanoantennas [J].
Bryant, Garnett W. ;
De Abajo, F. Javier Garcia ;
Aizpurua, Javier .
NANO LETTERS, 2008, 8 (02) :631-636
[5]   Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Wang, Yingmin ;
Masiello, David J. ;
Marks, Lawrence D. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12616-+
[6]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[7]   Visualizing the Optical Interaction Tensor of a Gold Nanoparticle Pair [J].
Deutsch, Bradley ;
Hillenbrand, Rainer ;
Novotny, Lukas .
NANO LETTERS, 2010, 10 (02) :652-656
[8]   Wavelength Dependence of Raman Enhancement from Gold Nanorod Arrays: Quantitative Experiment and Modeling of a Hot Spot Dominated System [J].
Doherty, Matthew D. ;
Murphy, Antony ;
McPhillips, John ;
Pollard, Robert J. ;
Dawson, Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (47) :19913-19919
[9]   Fabry-Perot Resonances in One-Dimensional Plasmonic Nanostructures [J].
Dorfmueller, Jens ;
Vogelgesang, Ralf ;
Weitz, R. Thomas ;
Rockstuhl, Carsten ;
Etrich, Christoph ;
Pertsch, Thomas ;
Lederer, Falk ;
Kern, Klaus .
NANO LETTERS, 2009, 9 (06) :2372-2377
[10]  
Edwards D.F., 1985, Handbook of optical constants of solids