Bayesian object localisation in images

被引:46
作者
Sullivan, J [1 ]
Blake, A [1 ]
Isard, M [1 ]
MacCormick, J [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
vision; object location; Monte Carlo; filter-bank; statistical independence;
D O I
10.1023/A:1011818912717
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Bayesian approach to intensity-based object localisation is presented that employs a teamed probabilistic model of image filter-bank output, applied via Monte Carlo methods, to escape the inefficiency of exhaustive search. An adequate probabilistic account of image data requires intensities both in the foreground (i.e, over the object), and in the background, to be modelled. Some previous approaches to object localisation by Monte Carlo methods have used models which, we claim, do not fully address the issue of the statistical independence of image intensities. It is addressed here by applying to each image a bank of filters whose outputs are approximately statistically independent. Distributions of the responses of individual filters, over foreground and background, are learned from training data. These distributions are then used to define a joint distribution for the output of the filter bank, conditioned on object configuration, and this serves as an observation likelihood for use in probabilistic inference about localisation. The effectiveness of probabilistic object localisation in image clutter, using Bayesian Localisation, is illustrated. Because it is a Monte Carlo method, it produces not simply a single estimate of object configuration, but an entire sample from the posterior distribution for the configuration. This makes sequential inference of configuration possible. Two examples are illustrated here: coarse to fine scale inference, and propagation of configuration estimates over time, in image sequences.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 46 条
[12]   FAST ALGORITHMS FOR ESTIMATING LOCAL IMAGE PROPERTIES [J].
BURT, PJ .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1983, 21 (03) :368-382
[13]   ACTIVE SHAPE MODELS - THEIR TRAINING AND APPLICATION [J].
COOTES, TF ;
TAYLOR, CJ ;
COOPER, DH ;
GRAHAM, J .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (01) :38-59
[14]   RELATIONS BETWEEN THE STATISTICS OF NATURAL IMAGES AND THE RESPONSE PROPERTIES OF CORTICAL-CELLS [J].
FIELD, DJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (12) :2379-2394
[15]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[16]   An active testing model for tracking roads in satellite images [J].
Geman, D ;
Jedynak, B .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (01) :1-14
[17]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[18]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[19]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[20]  
GRENANDER U, 1994, J R STAT SOC B, V56, P549