Randomized benchmarking of quantum gates

被引:666
作者
Knill, E. [1 ]
Leibfried, D. [1 ]
Reichle, R. [1 ]
Britton, J. [1 ]
Blakestad, R. B. [1 ]
Jost, J. D. [1 ]
Langer, C. [1 ]
Ozeri, R. [1 ]
Seidelin, S. [1 ]
Wineland, D. J. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
关键词
D O I
10.1103/PhysRevA.77.012307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
Abrams D. S., 1999, ARXIVQUANTPH9908083
[2]  
[Anonymous], ARXIVQUANTPH9807006
[3]  
[Anonymous], ARXIVQUANTPH0406025
[4]   Deterministic quantum teleportation of atomic qubits [J].
Barrett, MD ;
Chiaverini, J ;
Schaetz, T ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Leibfried, D ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 429 (6993) :737-739
[5]  
BRAVYI S, 2005, PHYS REV A, V71
[6]   Implementation of Grover's quantum search algorithm in a scalable system [J].
Brickman, KA ;
Haljan, PC ;
Lee, PJ ;
Acton, M ;
Deslauriers, L ;
Monroe, C .
PHYSICAL REVIEW A, 2005, 72 (05)
[7]   Implementation of the semiclassical quantum Fourier transform in a scalable system [J].
Chiaverini, J ;
Britton, J ;
Leibfried, D ;
Knill, E ;
Barrett, MD ;
Blakestad, RB ;
Itano, WP ;
Jost, JD ;
Langer, C ;
Ozeri, R ;
Schaetz, T ;
Wineland, DJ .
SCIENCE, 2005, 308 (5724) :997-1000
[8]   Realization of quantum error correction [J].
Chiaverini, J ;
Leibfried, D ;
Schaetz, T ;
Barrett, MD ;
Blakestad, RB ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 432 (7017) :602-605
[9]   Realization of quantum process tomography in NMR [J].
Childs, AM ;
Chuang, IL ;
Leung, DW .
PHYSICAL REVIEW A, 2001, 64 (01) :123141-123147
[10]   Scalable noise estimation with random unitary operators [J].
Emerson, J ;
Alicki, R ;
Zyczkowski, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S347-S352