Metabolic, idiosyncratic toxicity of drugs: overview of the hepatic toxicity induced by the anxiolytic, panadiplon

被引:41
作者
Ulrich, RG
Bacon, JA
Brass, EP
Cramer, CT
Petrella, DK
Sun, EL
机构
[1] Abbott Labs, Dept 463, Abbott Pk, IL 60064 USA
[2] Pharmacia & Upjohn Inc, Invest Toxicol Res, Kalamazoo, MI 49007 USA
[3] Harbor UCLA Med Ctr, Dept Med, Torrance, CA 90502 USA
关键词
D O I
10.1016/S0009-2797(01)00161-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Preclinical drug safety evaluation studies, typically conducted in two or more animal species, reveal and define dose-dependent toxicities and undesirable effects related to pharmacological mechanism of action. Idiosyncratic toxic responses are often not detected during this phase in development due to their relative rarity in incidence and differences in species sensitivity. This paper reviews and discusses the metabolic idiosyncratic toxicity and species differences observed for the experimental non-benzodiazepine anxiolytic, panadiplon. This compound produced evidence of hepatic toxicity in Phase 1 clinical trial volunteers that was not predicted by rat, dog or monkey preclinical studies. However, subsequent studies in Dutch-belted rabbits revealed a hepatic toxic syndrome consistent with a Reye's Syndrome-like idiosyncratic response. Investigations into the mechanism of toxicity using rabbits: and cultured hepatocytes from several species, including human, provided a sketch of the complex pathway required to produce hepatic injury. This pathway includes drug metabolism to a carboxylic acid metabolite (cyclopropane carboxylic acid), inhibition of mitochondrial fatty acid beta -oxidation. and effects on intermediary metabolism including depletion of glycogen and disruption of glucose homeostasis. We also provide evidence suggesting that the carboxylic acid metabolite decreases the availability of liver CoA and carnitine secondary to the formation of unusual acyl derivatives. Hepatic toxicity could be ameliorated by administration of carnitine, and to a lesser extent by pantothenate. These hepatocellular pathway defects, though not directly resulting in cell death. rendered hepatocytes sensitive to secondary stress, which subsequently produced apoptosis and hepatocellular necrosis. Not all rabbits showed evidence of hepatic toxicity, suggesting that individual or species differences in any step along this pathway may account for idiosyncratic responses. These differences may be roughly applied to other metabolic idiosyncratic hepatotoxic responses and include variations in drug metabolism, effects on mitochondrial function, nutritional status, and health or underlying disease. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:251 / 270
页数:20
相关论文
共 73 条
[41]   CARNITINE METABOLISM AND MORPHOMETRIC CHANGE OF LIVER-MITOCHONDRIA IN VALPROATE-TREATED RATS [J].
MURAKAMI, K ;
SUGIMOTO, T ;
NISHIDA, N ;
WOO, M ;
ARAKI, A ;
KOBAYASHI, Y ;
SAKANE, Y .
NEUROPEDIATRICS, 1990, 21 (04) :187-190
[42]   ATP DEPLETION RATHER THAN MITOCHONDRIAL DEPOLARIZATION MEDIATES HEPATOCYTE KILLING AFTER METABOLIC INHIBITION [J].
NIEMINEN, AL ;
SAYLOR, AK ;
HERMAN, B ;
LEMASTERS, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (01) :C67-C74
[43]   BIOCHEMICAL RELATIONSHIPS BETWEEN REYES AND REYES-LIKE METABOLIC AND TOXICOLOGICAL SYNDROMES [J].
OSTERLOH, J ;
CUNNINGHAM, W ;
DIXON, A ;
COMBEST, D .
MEDICAL TOXICOLOGY AND ADVERSE DRUG EXPERIENCE, 1989, 4 (04) :272-294
[44]   RECIPROCAL EFFECTS OF 5-(TETRADECYLOXY)-2-FUROIC ACID ON FATTY-ACID OXIDATION [J].
OTTO, DA ;
CHATZIDAKIS, C ;
KASZIBA, E ;
COOK, GA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1985, 242 (01) :23-31
[45]   ASSESSMENT OF MITOCHONDRIAL-MEMBRANE POTENTIAL AS AN INDICATOR OF CYTOTOXICITY [J].
RAHN, CA ;
BOMBICK, DW ;
DOOLITTLE, DJ .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1991, 16 (03) :435-448
[46]   Effect of troglitazone (rezulin) on fructose 2,6-bisphosphate concentration and glucose metabolism in isolated rat hepatocytes [J].
Raman, P ;
Foster, SE ;
Stokes, MC ;
Strenge, JK ;
Judd, RL .
LIFE SCIENCES, 1998, 62 (08) :PL89-PL94
[47]   MECHANISMS OF UNPREDICTABLE ADVERSE DRUG-REACTIONS [J].
RIEDER, MJ .
DRUG SAFETY, 1994, 11 (03) :196-212
[48]   Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C: A case series [J].
Riley, TR ;
Smith, JP .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 1998, 93 (09) :1563-1565
[49]  
ROITMAN KJ, 1987, FASEB J, V46, P2263
[50]   METABOLIC EFFECTS OF PIVALATE IN ISOLATED RAT HEPATOCYTES [J].
RUFF, LJ ;
BRASS, EP .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1991, 110 (02) :295-302