Use of fractional polynomials for dose-response modelling and quantitative risk assessment in developmental toxicity studies

被引:15
作者
Faes, C
Geys, H
Aerts, M
Molenberghs, G
机构
[1] Limburgs Univ Ctr, Ctr Stat, B-3590 Diepenbeek, Belgium
[2] Limburgs Univ Ctr, Ctr Biostat, B-3590 Diepenbeek, Belgium
关键词
benchmark dose; beta-binomial model; conditional model; developmental toxicity; dose-response; fractional polynomials; MULTIVARIATE BINARY DATA; LIKELIHOOD; GLYCOL; MICE;
D O I
10.1191/1471082X03st051oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Developmental toxicity studies are designed to assess the potential adverse effects of an exposure on developing fetuses. Safe dose levels can be determined using dose-response modelling. To this end, it is important to investigate the effect of misspecifying the dose-response model on the safe dose. Since classical polynomial predictors are often of poor quality, there is a clear need for alternative specifications of the predictors, such as fractional polynomials. By means of simulations, we will show how fractional polynomial predictors may resolve possible model misspecifications and may thus yield more reliable estimates of the benchmark doses.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 24 条
[11]   USE OF A CORRELATED BINOMIAL MODEL FOR ANALYSIS OF CERTAIN TOXICOLOGICAL EXPERIMENTS [J].
KUPPER, LL ;
HASEMAN, JK .
BIOMETRICS, 1978, 34 (01) :69-76
[12]   Misspecifying the likelihood for clustered binary data [J].
Molenberghs, G ;
Declerck, L ;
Aerts, M .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) :327-349
[13]  
Molenberghs G, 1999, ENVIRONMETRICS, V10, P279, DOI 10.1002/(SICI)1099-095X(199905/06)10:3<279::AID-ENV352>3.0.CO
[14]  
2-X
[15]  
Morgan B. J. T., 1992, ANAL QUANTAL RESPONS
[16]  
PRICE CJ, 1987, FUND APPL TOXICOL, V8, P115, DOI 10.1016/0272-0590(87)90107-2
[17]   THE DEVELOPMENTAL TOXICITY OF ETHYLENE-GLYCOL IN RATS AND MICE [J].
PRICE, CJ ;
KIMMEL, CA ;
TYL, RW ;
MARR, MC .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1985, 81 (01) :113-127
[18]   A NOTE ON THE BIAS OF ESTIMATORS WITH MISSING DATA [J].
ROTNITZKY, A ;
WYPIJ, D .
BIOMETRICS, 1994, 50 (04) :1163-1170
[19]   REGRESSION USING FRACTIONAL POLYNOMIALS OF CONTINUOUS COVARIATES - PARSIMONIOUS PARAMETRIC MODELING [J].
ROYSTON, P ;
ALTMAN, DG .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1994, 43 (03) :429-467
[20]   Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials [J].
Sauerbrei, W ;
Royston, P .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1999, 162 :71-94