Three-dimensional randomly dilute Ising model:: Monte Carlo results -: art. no. 036136

被引:50
作者
Calabrese, P
Martín-Mayor, V
Pelissetto, A
Vicari, E
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56126 Pisa, Italy
[3] Univ Complutense Madrid, Dept Fis Teor 1, E-28040 Madrid, Spain
[4] Univ Zaragoza, Inst Biocomp & Fis Sistemas Complejos BIFI, E-50009 Zaragoza, Spain
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[6] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[7] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[8] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 03期
关键词
D O I
10.1103/PhysRevE.68.036136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L-3 with Lless than or equal to256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining nu=0.683(3), eta=0.035(2), beta=0.3535(17), and alpha=-0.049(9), in agreement with previous numerical simulations. We also estimate numerically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for the small-magnetization expansion of the equation of state, and the invariant amplitude ratio R-xi(+) that expresses the universality of the free-energy density per correlation volume. We find R-xi(+)=0.2885(15).
引用
收藏
页数:17
相关论文
共 71 条
[1]   Absence of self-averaging and universal fluctuations in random systems near critical points [J].
Aharony, A ;
Harris, AB .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3700-3703
[2]  
Aharony A., 1976, Phase Transitions and Critical Phenomena, V6, P357
[3]   Summability of the perturbative expansion for a zero-dimensional disordered spin model [J].
Alvarez, G ;
Martín-Mayor, V ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (05) :841-850
[4]  
[Anonymous], PHASE TRANSITIONS CR
[5]   Finite Size Scaling and "perfect" actions:: the three dimensional Ising model [J].
Ballesteros, HG ;
Fernández, LA ;
Martin-Mayor, V ;
Sudupe, AM .
PHYSICS LETTERS B, 1998, 441 (1-4) :330-338
[6]   The four-dimensional site-diluted Ising model: A finite-size scaling study [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
NUCLEAR PHYSICS B, 1998, 512 (03) :681-701
[7]   Critical exponents of the three-dimensional diluted Ising model [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
PHYSICAL REVIEW B, 1998, 58 (05) :2740-2747
[8]   Monte Carlo simulations of the random-field Ising model [J].
Barber, WC ;
Belanger, DP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 :545-547
[9]  
Belanger D. P., 1998, SPIN GLASSES RANDOM, P251
[10]  
Belanger DP, 2000, BRAZ J PHYS, V30, P682, DOI 10.1590/S0103-97332000000400009