Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

被引:51
作者
Grierson, B. A. [1 ]
Burrell, K. H. [2 ]
Nazikian, R. M. [1 ]
Solomon, W. M. [1 ]
Garofalo, A. M. [2 ]
Belli, E. A. [2 ]
Staebler, G. M. [2 ]
Fenstermacher, M. E. [3 ]
McKee, G. R. [4 ]
Evans, T. E. [2 ]
Orlov, D. M. [5 ]
Smith, S. P. [2 ]
Chrobak, C. [2 ]
Chrystal, C. [6 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ Wisconsin, Dept Engn Phys, Madison, WI 53796 USA
[5] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
PARTICLE LOSSES; PLASMAS;
D O I
10.1063/1.4918359
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of tau(p)/tau(e) approximate to 2 - 3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of rho = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 45 条
[1]   Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling [J].
Angioni, C. ;
Mantica, P. ;
Puetterich, T. ;
Valisa, M. ;
Baruzzo, M. ;
Belli, E. A. ;
Belo, P. ;
Casson, F. J. ;
Challis, C. ;
Drewelow, P. ;
Giroud, C. ;
Hawkes, N. ;
Hender, T. C. ;
Hobirk, J. ;
Koskela, T. ;
Taroni, L. Lauro ;
Maggi, C. F. ;
Mlynar, J. ;
Odstrcil, T. ;
Reinke, M. L. ;
Romanelli, M. .
NUCLEAR FUSION, 2014, 54 (08)
[2]   Particle transport in tokamak plasmas, theory and experiment [J].
Angioni, C. ;
Fable, E. ;
Greenwald, M. ;
Maslov, M. ;
Peeters, A. G. ;
Takenaga, H. ;
Weisen, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[3]  
[Anonymous], JETR8708
[4]  
[Anonymous], P 41 EPS C PLASM PHY
[5]  
[Anonymous], 982 JPP M PLANCK I
[6]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[7]   Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields [J].
Burrell, K. H. ;
Garofalo, A. M. ;
Solomon, W. M. ;
Fenstermacher, M. E. ;
Orlov, D. M. ;
Osborne, T. H. ;
Park, J-K. ;
Snyder, P. B. .
NUCLEAR FUSION, 2013, 53 (07)
[8]   Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak [J].
Burrell, KH ;
Austin, ME ;
Brennan, DP ;
DeBoo, JC ;
Doyle, EJ ;
Fenzi, C ;
Fuchs, C ;
Gohil, P ;
Greenfield, CM ;
Groebner, RJ ;
Lao, LL ;
Luce, TC ;
Makowski, MA ;
McKee, GR ;
Moyer, RA ;
Petty, CC ;
Porkolab, M ;
Rettig, CL ;
Rhodes, TL ;
Rost, JC ;
Stallard, BW ;
Strait, EJ ;
Synakowski, EJ ;
Wade, MR ;
Watkins, JG ;
West, WP .
PHYSICS OF PLASMAS, 2001, 8 (05) :2153-2162
[9]   Tokamak profile prediction using direct gyrokinetic and neoclassical simulation [J].
Candy, J. ;
Holland, C. ;
Waltz, R. E. ;
Fahey, M. R. ;
Belli, E. .
PHYSICS OF PLASMAS, 2009, 16 (06)
[10]   Demonstration of ITER operational scenarios on DIII-D [J].
Doyle, E. J. ;
DeBoo, J. C. ;
Ferron, J. R. ;
Jackson, G. L. ;
Luce, T. C. ;
Murakami, M. ;
Osborne, T. H. ;
Park, J. -M. ;
Politzer, P. A. ;
Reimerdes, H. ;
Budny, R. V. ;
Casper, T. A. ;
Challis, C. D. ;
Groebner, R. J. ;
Holcomb, C. T. ;
Hyatt, A. W. ;
La Haye, R. J. ;
McKee, G. R. ;
Petrie, T. W. ;
Petty, C. C. ;
Rhodes, T. L. ;
Shafer, M. W. ;
Snyder, P. B. ;
Strait, E. J. ;
Wade, M. R. ;
Wang, G. ;
West, W. P. ;
Zeng, L. .
NUCLEAR FUSION, 2010, 50 (07)