New insights into innate immunity in Arabidopsis

被引:69
作者
Ryan, Clarence A. [1 ]
Huffaker, Alisa [1 ]
Yamaguchi, Yube [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
D O I
10.1111/j.1462-5822.2007.00991.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The term innate immunity has been described as '. . . the surveillance system that detects the presence and nature of the infection and provides the first line of host defense . . .' (Medzhitov, 2001; Nat Rev Immunol 1: 135-145). The strategy of innate immunity is based on the recognition of constitutive and conserved molecules from pathogens by specific receptors, triggering defence responses (Medzhitov and Janeway, 2002; Science 296: 298-300). It has been only within the past few years that studies of plant innate immunity, especially in Arabidopsis, have provided important insights into molecular details that define innate immunity in plants. Here we review the innate immune response in Arabidopsis, where leucine-rich repeat (LRR) cell surface receptors play central roles in monitoring the presence of pathogen (microbe) associated molecules to initiate the rapid expression of defence genes. The PAMPS also activate the expression of genes encoding a family of endogenous peptides (AtPep1 paralogues) and their receptor (PEPR1) that amplify defence signalling through a feedback loop initiated by PAMPS. The concept of innate immunity has provided a valuable framework for researchers to re-evaluate the roles of exogenous and endogenous signals that regulate the expression of plant defensive genes.
引用
收藏
页码:1902 / 1908
页数:7
相关论文
共 58 条
[1]   Toll-like receptor signaling [J].
Akira, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38105-38108
[2]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[3]   OLIGOSACCHARINS - OLIGOSACCHARIDE REGULATORY MOLECULES [J].
ALBERSHEIM, P ;
DARVILL, A ;
AUGUR, C ;
CHEONG, JJ ;
EBERHARD, S ;
HAHN, MG ;
MARFA, V ;
MOHNEN, D ;
ONEILL, MA ;
SPIRO, MD ;
YORK, WS .
ACCOUNTS OF CHEMICAL RESEARCH, 1992, 25 (02) :77-83
[4]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[5]  
AUSUBEL FM, 2005, NAT IMMUNOL, V10, P943
[6]  
BOLLER T, 1995, ANNU REV PLANT PHYS, V46, P189, DOI 10.1146/annurev.arplant.46.1.189
[7]   Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases [J].
Brunner, F ;
Rosahl, S ;
Lee, J ;
Rudd, JJ ;
Geiler, C ;
Kauppinen, S ;
Rasmussen, G ;
Scheel, D ;
Nürnberger, T .
EMBO JOURNAL, 2002, 21 (24) :6681-6688
[8]   The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception [J].
Chinchilla, D ;
Bauer, Z ;
Regenass, M ;
Boller, T ;
Felix, G .
PLANT CELL, 2006, 18 (02) :465-476
[9]   The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis [J].
Clark, SE ;
Williams, RW ;
Meyerowitz, EM .
CELL, 1997, 89 (04) :575-585
[10]   NASCArrays: a repository for microarray data generated by NASC's transcriptomics service [J].
Craigon, DJ ;
James, N ;
Okyere, J ;
Higgins, J ;
Jotham, J ;
May, S .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D575-D577