Kosterlitz-Thouless transition of quantum XY model in two dimensions

被引:72
作者
Harada, K [1 ]
Kawashima, N
机构
[1] Kyoto Univ, Div Appl Syst Sci, Sakyo Ku, Kyoto 6068501, Japan
[2] Toho Univ, Dept Phys, Chiba 2748510, Japan
关键词
quantum XY model; Kosterlitz-Thouless transition; quantum Monte Carlo; helicity modulus;
D O I
10.1143/JPSJ.67.2768
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-dimensional S = 1/2 XY model is investigated with an extensive quantum Monte Carlo simulation. The helicity modulus is precisely estimated through a continuous-time loop algorithm for systems up to 128 x 128 near and below the critical temperature. The critical temperature is estimated as T-KT = 0.3427(2)J. The obtained estimates for the helicity modulus are well fitted hy a scaling form derived from the Kosterlitz renormalization group equation. The validity of the Kosterlitz-Thouless theory for this model is confirmed.
引用
收藏
页码:2768 / 2776
页数:9
相关论文
共 23 条
[1]   Simulations of discrete quantum systems in continuous Euclidean time [J].
Beard, BB ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5130-5133
[2]   KOSTERLITZ-THOULESS TRANSITION IN THE 2-DIMENSIONAL QUANTUM XY MODEL [J].
DING, HQ ;
MAKIVIC, MS .
PHYSICAL REVIEW B, 1990, 42 (10) :6827-6830
[3]   COMMENT ON KOSTERLITZ-THOULESS TRANSITION IN THE 2-DIMENSIONAL QUANTUM XY MODEL - REPLY [J].
DING, HQ ;
MAKIVIC, MS .
PHYSICAL REVIEW B, 1992, 45 (01) :491-492
[4]   PHASE-TRANSITION AND THERMODYNAMICS OF QUANTUM XY-MODEL IN 2 DIMENSIONS [J].
DING, HQ .
PHYSICAL REVIEW B, 1992, 45 (01) :230-242
[5]   CLUSTER ALGORITHM FOR VERTEX MODELS [J].
EVERTZ, HG ;
LANA, G ;
MARCU, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :875-879
[6]   PHASE-TRANSITION IN THE 2D XY MODEL [J].
GUPTA, R ;
DELAPP, J ;
BATROUNI, GG ;
FOX, GC ;
BAILLIE, CF ;
APOSTOLAKIS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1996-1999
[7]   CRITICAL-BEHAVIOR OF THE 2-DIMENSIONAL XY MODEL [J].
GUPTA, R ;
BAILLIE, CF .
PHYSICAL REVIEW B, 1992, 45 (06) :2883-2898
[8]   Universal jump in the helicity modulus of the two-dimensional quantum XY model [J].
Harada, K ;
Kawashima, N .
PHYSICAL REVIEW B, 1997, 55 (18) :11949-11952
[9]   Cluster algorithms for anisotropic quantum spin models [J].
Kawashima, N .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (1-2) :131-153
[10]   GENERALIZATION OF THE FORTUIN-KASTELEYN TRANSFORMATION AND ITS APPLICATION TO QUANTUM SPIN SIMULATIONS [J].
KAWASHIMA, N ;
GUBERNATIS, JE .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) :169-221