Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants

被引:563
作者
Sun, Hongmei [1 ,2 ]
Cao, Linyuan [1 ,2 ]
Lu, Lehui [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Electroanalyt Chem, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
Magnetic nanoparticles; graphene; nanocomposites; dye pollutants; removal; AQUEOUS-SOLUTION; WASTE-WATER; GOLD NANOPARTICLES; MALACHITE GREEN; METHYLENE-BLUE; IONIC DYES; ADSORPTION; FABRICATION; ISOTHERMS; COMPOSITE;
D O I
10.1007/s12274-011-0111-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples-including industrial waste water and lake water-have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.
引用
收藏
页码:550 / 562
页数:13
相关论文
共 60 条
[1]   Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula [J].
Ai, Kelong ;
Liu, Yanlan ;
Lu, Lehui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (27) :9496-+
[2]  
AI KL, J MAT CHEM IN PRESS, DOI DOI 10.1039/COJM02865G
[3]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[4]   Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution [J].
Asadullah, Mohammad ;
Asaduzzaman, Mohammad ;
Kabir, Mohammad Shajahan ;
Mostofa, Mohammad Golam ;
Miyazawa, Tomohisa .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 174 (1-3) :437-443
[5]   Ureasil gels as a highly efficient adsorbent for water purification [J].
Bekiari, Vlasoula ;
Lianos, Panagiotis .
CHEMISTRY OF MATERIALS, 2006, 18 (17) :4142-4146
[6]   Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment [J].
Blackburn, RS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (18) :4905-4909
[7]   In situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction [J].
Cao, Linyuan ;
Liu, Yanlan ;
Zhang, Baohua ;
Lu, Lehui .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (08) :2339-2346
[8]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[9]   Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation, using fiber-supported cobalt phthalocyanine [J].
Chen, Wenxing ;
Lu, Wangyang ;
Yao, Yuyuan ;
Xu, Minhong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (17) :6240-6245
[10]  
Christie R.M., 2007, ENV ASPECTS TEXTILE