A maize resistance gene functions against bacterial streak disease in rice

被引:183
作者
Zhao, BY
Lin, XH
Poland, J
Trick, H
Leach, J
Hulbert, S [1 ]
机构
[1] Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA
[2] Colorado State Univ, Ft Collins, CO 80537 USA
关键词
disease resistance; nonhost resistance; Xanthomonas;
D O I
10.1073/pnas.0503023102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzkola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.
引用
收藏
页码:15383 / 15388
页数:6
相关论文
共 42 条
[1]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[2]   Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley [J].
Ayliffe, MA ;
Steinau, M ;
Park, RF ;
Rooke, L ;
Pacheco, MG ;
Hulbert, SH ;
Trick, HN ;
Pryor, AJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (08) :853-864
[3]   BREEDING RICE FOR RESISTANCE TO PESTS [J].
BONMAN, JM ;
KHUSH, GS ;
NELSON, RJ .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1992, 30 :507-528
[4]   HOST-RANGE OF A PLANT-PATHOGENIC FUNGUS DETERMINED BY A SAPONIN DETOXIFYING ENZYME [J].
BOWYER, P ;
CLARKE, BR ;
LUNNESS, P ;
DANIELS, MJ ;
OSBOURN, AE .
SCIENCE, 1995, 267 (5196) :371-374
[5]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[6]   The isolation and mapping of disease resistance gene analogs in maize [J].
Collins, NC ;
Webb, CA ;
Seah, S ;
Ellis, JG ;
Hulbert, SH ;
Pryor, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (10) :968-978
[7]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[8]   A TECHNIQUE FOR RADIOLABELING DNA RESTRICTION ENDONUCLEASE FRAGMENTS TO HIGH SPECIFIC ACTIVITY [J].
FEINBERG, AP ;
VOGELSTEIN, B .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (01) :6-13
[9]  
FINER JJ, 1992, PLANT CELL REP, V11, P323, DOI 10.1007/BF00233358
[10]   INHERITANCE AND EXPRESSION OF CHIMERIC GENES IN THE PROGENY OF TRANSGENIC MAIZE PLANTS [J].
FROMM, ME ;
MORRISH, F ;
ARMSTRONG, C ;
WILLIAMS, R ;
THOMAS, J ;
KLEIN, TM .
BIO-TECHNOLOGY, 1990, 8 (09) :833-839